# Asymptotic Behavior of the Eigenvalues of the Schrodinger Operator with Transversal Potential in a Weakly Curved Infinite Cylinder

Article

- 56 Downloads
- 2 Citations

## Abstract

In this paper, we derive sufficient conditions for the existence of an eigenvalue for the Laplace and the Schrodinger operators with transversal potential for homogeneous Dirichlet boundary conditions in a tube, i.e., in a curved and twisted infinite cylinder. For tubes with small curvature and small internal torsion, we derive an asymptotic formula for the eigenvalue of the problem. We show that, under certain relations between the curvature and the internal torsion of the tube, the above operators possess no discrete spectrum.

## Key words

Schrodiger equation in nanotubes spectral problem transversal potential locally perturbed boundary value problem## Preview

Unable to display preview. Download preview PDF.

## REFERENCES

- 1.V. P. Maslov, “Asymptotics of eigenfunctions of the equation Δ
*u*+*k*^{2}*u*= 0 with boundary conditions on equidistant curves and scattering of electromagnetic waves in waveguides,”*Dokl. Akad. Nauk SSSR*[*Soviet Math. Dokl.*],**123**(1958), no. 4, 631–633.Google Scholar - 2.V. P. Maslov, “Mathematical Aspects of Integral Optics,”
*Russian J. Math. Phys.*,**8**(2001), 83–180.Google Scholar - 3.V. P. Maslov and E. M. Vorob’ev, “On open single-mode resonators,”
*Dokl. Akad. Nauk SSSR*[*Soviet Math. Dokl.*],**179**(1968), no. 3, 558–561.Google Scholar - 4.V. V. Belov, S. Yu. Dobrokhotov, and S. O. Sinitsyn, “Asymptotic solutions of the Schrodinger equation in thin tubes,”
*Proc. Inst. Math. and Mech. of Ural Division of RAS*,**9**(2003), no. 1, 1–11.Google Scholar - 5.V. V. Belov, S. Yu. Dobrokhotov, S. O. Sinitsyn, and T. Ya. Tudorovskii, “Quasiclassical approximation and Maslov’s canonocal operator for nonrelativistic equations of quantum mechanics in curved nanotubes,”
*Dokl. Ross. Akad. Nauk*[*Russian Acad. Sci. Dokl. Math.*],**393**(2003), no. 4, 1–5.Google Scholar - 6.V. V. Belov, S. Yu. Dobrokhotov, and T. Ya. Tudorovskii, “Quantum and classical dynamics of electron in thin curved tubes with spin and external electromagnetic fields taken into account,”
*Russian J. Math. Phys.*,**11**(2004), no. 1, 109–118.MathSciNetGoogle Scholar - 7.V. V. Belov, S. Yu. Dobrokhotov, and T. Ya. Tudorovskii, “Asymptotical solutions of nonrelativistic equations of quantum mechanics in curved nanotubes 1,”
*Teoret. Mat. Fiz.*[*Theoret. and Math. Phys.*],**141**(2004), no. 2, 267–303.MathSciNetGoogle Scholar - 8.P. Duclos and P. Exner, “Curvature-induced bound states in quantum waveguides in two and three dimensions,”
*Rev. Math. Phys.*,**7**(1995), 73–102.CrossRefGoogle Scholar - 9.P. Exner, “Bound states in curved quantum waveguides,”
*J. Math. Phys.*,**30**(1989), 2574–2580.CrossRefGoogle Scholar - 10.P. Exner, “Bound states in quantum waveguides of a slowly decaying curvature,”
*J. Math. Phys.*,**34**(1993), 23–28.CrossRefGoogle Scholar - 11.
- 12.W. Bulla, F. Gesztesy, W. Renger, and B. Simon, “Weakly couped bound states in quantum waveguides,”
*Proc Amer. Math. Soc.*,**125**(1997), 1487–1495.CrossRefGoogle Scholar - 13.M. V. Entin and L. I. Magarill, “Electrons in twisted quantum wire,”
*Phys. Rev. B*,**66**(2002), no. 1–5, 205308-1–205308-5.CrossRefGoogle Scholar - 14.L. I. Magarill and M. V. Entin, “Electrons in a curvilinear quantum wire,”
*Soviet Phys. JETP*,**123**(2003), no. 4, 867–876.Google Scholar - 15.V. V. Grushin, “On eigenvalues of a finitely perturbed Laplace operator in infinite cylinder domains,”
*Mat. Zametki*[*Math. Notes*],**75**(2004), no. 3, 360–371.Google Scholar - 16.L. Hormander,
*Linear Partial Differential Operators*, New York, 1963.Google Scholar - 17.V. A. Kondrat’ev, “Boundary value problems for elliptic equations in domains with conical and extreme points,”
*Trudy Moskov. Mat. Obshch.*[*Trans. Moscow Math. Soc.*],**16**(1967), 207–318.Google Scholar - 18.M. Reed and B. Simon,
*Methods of Modern Mathematical Physics*.**4***Analysis of Operators*, Academic Press, New York, 1979.Google Scholar - 19.M. Reed and B. Simon,
*Methods of Modern Mathematical Physics*.**1***Functional Analysis*, Academic Press, New York, 1981.Google Scholar - 20.I. Ts. Gokhberg, “On linear operators which are analytic functions of a parameter,”
*Dokl. Akad. Nauk SSSR*[*Soviet Math. Dokl.*],**78**(1951), no. 4, 629–632.Google Scholar - 21.P. M. Blekher, “On operators which are meromorphic functions of a parameter,”
*Vestnik Moskov. Univ. Ser. I Mat. Mekh.*[*Moscow Univ. Math. Bull.*] (1965), no. 5, 30–36.Google Scholar

## Copyright information

© Springer Science+Business Media, Inc. 2005