Discrete spectrum of Schrödinger operators with potentials concentrated near conical surfaces

  • Sebastian Egger
  • Joachim KernerEmail author
  • Konstantin Pankrashkin


In this paper, we study spectral properties of a three-dimensional Schrödinger operator \(-\Delta +V\) with a potential V given, modulo rapidly decaying terms, by a function of the distance to an infinite conical surface with a smooth cross section. As a main result, we show that there are infinitely many discrete eigenvalues accumulating at the bottom of the essential spectrum which itself is identified as the ground state energy of a certain one-dimensional operator. Most importantly, based on a result of Kirsch and Simon, we are able to establish the asymptotic behavior of the eigenvalue counting function using an explicit spectral-geometric quantity associated with the cross section. This shows a universal character of some previous results on conical layers and \(\delta \)-potentials created by conical surfaces.


Discrete spectrum Conical surface Attractive potential 

Mathematics Subject Classification

81Q10 81Q80 81Q37 81Q35 



  1. 1.
    Albeverio, S., Gesztesy, F., Hoegh-Krohn, R., Holden, H.: Solvable Models in Quantum Mechanics, 2nd edn. With an appendix by P. Exner. AMS Chelsea Publishing, Providence (2005)Google Scholar
  2. 2.
    Behrndt, J., Exner, P., Lotoreichik, V.: Schrödinger operators with \(\delta \)-interactions supported on conical surfaces. J. Phys. A 47, 355202 (2014)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bruneau, V., Pankrashkin, K., Popoff, N.: Eigenvalue counting function for Robin Laplacians on conical domains. J. Geom. Anal. 28, 123–151 (2018)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Carron, G., Exner, P., Krejčiřík, D.: Topologically nontrivial quantum layers. J. Math. Phys. 45, 774 (2004)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Dauge, M., Ourmières-Bonafos, T., Lafranche, Y.: Dirichlet spectrum of the Fichera layer. Integr. Equ. Oper. Theory 90, 60 (2018)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Dauge, M., Ourmières-Bonafos, T., Raymond, N.: Spectral asymptotics of the Dirichlet Laplacian in a conical layer. Commun. Pure Appl. Anal. 14, 1239–1258 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Duclos, P., Exner, P., Krejčiřík, D.: Bound states in curved quantum layers. Commun. Math. Phys. 223, 13–28 (2001)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Exner, P.: Leaky quantum graphs: a review. In: Exner, P., Keating, J.P., Kuchment, P., Sunada, T., Teplyaev, A. (eds.) Analysis on Graphs and Its Applications. Proceedings of Symposia in Pure Mathematics, vol. 77, pp. 523–564. American Mathematical Society, Providence (2008)CrossRefGoogle Scholar
  9. 9.
    Exner, P., Kovařík, H.: Quantum Waveguides. Springer, Berlin (2015)CrossRefGoogle Scholar
  10. 10.
    Exner, P., Lotoreichik, V.: A spectral isoperimetric inequality for cones. Lett. Math. Phys. 107(4), 717–732 (2017)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Exner, P., Šeba, P.: Bound states in curved quantum waveguides. J. Math. Phys. 30, 2574–2580 (1989)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Exner, P., Tater, M.: Spectrum of Dirichlet Laplacian in a conical layer. J. Phys. A 43, 474023 (2010)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Krejčiřík, D., Lotoreichik, V., Ourmières-Bonafos, T.: Spectral transitions for Aharonov-Bohm Laplacians on conical layers. In: Proceedings of the Royal Society of Edinburgh: Section A Mathematics, vol. 149, No. 6, pp. 1663–1687. Royal Society of Edinburgh Scotland Foundation. MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kirsch, W., Simon, B.: Corrections to the classical behavior of the number of bound states of Schrödinger operators. Ann. Phys. 183, 122–130 (1988)ADSCrossRefGoogle Scholar
  15. 15.
    Lotoreichik, V., Ourmières-Bonafos, T.: On the bound states of Schrödinger operators with \(\delta \)-interactions on conical surfaces. Commun. Partial Differ. Equ. 41, 999–1028 (2016)CrossRefGoogle Scholar
  16. 16.
    Lu, Z., Rowlett, J.: On the discrete spectrum of quantum layers. J. Math. Phys. 53, 073519 (2012)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Ourmières-Bonafos, T., Pankrashkin, K.: Discrete spectrum of interactions concentrated near conical surfaces. Appl. Anal. 97(9), 1628–1649 (2018)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Ourmières-Bonafos, T., Pankrashkin, K., Pizzichillo, F.: Spectral asymptotics for \(\delta \)-interactions on sharp cones. J. Math. Anal. Appl. 458, 566–589 (2018)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Sebastian Egger
    • 1
  • Joachim Kerner
    • 2
    Email author
  • Konstantin Pankrashkin
    • 3
  1. 1.Department of MathematicsTechnion-Israel Institute of TechnologyHaifaIsrael
  2. 2.Department of Mathematics and Computer ScienceFernUniversität in HagenHagenGermany
  3. 3.Département de mathématiquesUniv. Paris-Sud, CNRS, Université Paris-SaclayOrsay CedexFrance

Personalised recommendations