Advertisement

Letters in Mathematical Physics

, Volume 109, Issue 10, pp 2291–2304 | Cite as

Curvature-stabilized skyrmions with angular momentum

  • Christof MelcherEmail author
  • Zisis N. Sakellaris
Article
  • 67 Downloads

Abstract

We examine skyrmionic field configurations on a spherical ferromagnet with large normal anisotropy. Exploiting variational concepts of angular momentum, we find a new family of localized solutions to the Landau–Lifshitz equation that are topologically distinct from the ground state and not equivariant. Significantly, we observe an emergent spin–orbit coupling on the level of magnetization dynamics in a simple system without individual rotational invariance in spin and coordinate space.

Keywords

Magnetic skyrmions Landau–Lifshitz equation Angular momentum 

Mathematics Subject Classification

49S05 35Q60 37K05 82D40 

Notes

Acknowledgements

We are indebted to Stavros Komineas for pointing out the relevance of angular momenta in the context of chiral magnetism and for valuable discussions on the subject matter.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. 1.
    Belavin, A., Polyakov, A.: Metastable states of two-dimensional isotropic ferromagnets. JETP Lett. 22(10), 245–248 (1975)ADSGoogle Scholar
  2. 2.
    Bogdanov, A., Hubert, A.: Thermodynamically stable magnetic vortex states in magnetic crystals. J. Magnet. Magnet. Mater. 138(3), 255–269 (1994)ADSCrossRefGoogle Scholar
  3. 3.
    Bogdanov, A., Hubert, A.: The stability of vortex-like structures in uniaxial ferromagnets. J. Magnet. Magnet. Mater. 195(1), 182–192 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    Bogdanov, A., Yablonskii, D.A.: Thermodynamically stable vortices in magnetically ordered crystals. The mixed state of magnets. Sov. Phys. JETP 68(1), 101–103 (1989)Google Scholar
  5. 5.
    Brezis, H., Coron, J.-M.: Large solutions for harmonic maps in two dimensions. Commun. Math. Phys. 92(2), 203–215 (1983)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Brezis, H., Coron, J.-M., Lieb, E.H.: Harmonic maps with defects. Commun. Math. Phys. 107(4), 649–705 (1986)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Di Fratta, G., Slastikov, V., Zarnescu, A.: On a sharp Poincaré-type inequality on the 2-sphere and its application in micromagnetics. arXiv preprint. arXiv:1901.04334 (2019)
  8. 8.
    Döring, L., Melcher, C.: Compactness results for static and dynamic chiral skyrmions near the conformal limit. Calc. Var. Partial Differ. Equ. 56(3) Art. 60, 30 (2017)Google Scholar
  9. 9.
    Esteban, M.J.: A direct variational approach to Skyrme’s model for meson fields. Commun. Math. Phys. 105(4), 571–591 (1986)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Gol’dshtein, E., Tsukernik, V.: Angular momentum of a Heisenberg ferromagnet with a magnetic dipole interaction. Zh. Eksp. Teor. Fiz 87, 1330–1335 (1984)Google Scholar
  11. 11.
    Gustafson, S., Shatah, J.: The stability of localized solutions of Landau–Lifshitz equations. Commun. Pure Appl. Math. 55(9), 1136–1159 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hoffmann, M., Zimmermann, B., Müller, G.P., Schürhoff, D., Kiselev, N.S., Melcher, C., Blügel, S.: Antiskyrmions stabilized at interfaces by anisotropic Dzyaloshinskii–Moriya interaction. Nat. Commun. 8, 308 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    Komineas, S., Papanicolaou, N.: Topology and dynamics in ferromagnetic media. Physica D Nonlinear Phenom. 99(1), 81–107 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kosevich, A.M., Ivanov, B., Kovalev, A.: Magnetic solitons. Phys. Rep. 194(3–4), 117–238 (1990)ADSCrossRefGoogle Scholar
  15. 15.
    Kravchuk, V.P., Rößler, U.K., Volkov, O.M., Sheka, D.D., van den Brink, J., Makarov, D., Fuchs, H., Fangohr, H., Gaididei, Y.: Topologically stable magnetization states on a spherical shell: curvature-stabilized skyrmions. Phys. Rev. B 94(14), 144402 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    Kurzke, M., Melcher, C., Moser, R., Spirn, D.: Ginzburg-Landau vortices driven by the Landau–Lifshitz–Gilbert equation. Arch. Ration. Mech. Anal. 199(3), 843–888 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Li, X., Melcher, C.: Stability of axisymmetric chiral skyrmions. J. Funct. Anal. 275(10), 2817–2844 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Lin, F., Yang, Y.: Existence of two-dimensional skyrmions via the concentration-compactness method. Commun. Pure Appl. Math. 57(10), 1332–1351 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The limit case. II. Rev. Mat. Iberoam. 1(2), 45–121 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Manton, N., Sutcliffe, P.: Topological Solitons. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (2004)zbMATHGoogle Scholar
  21. 21.
    Melcher, C.: Chiral skyrmions in the plane. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 470(2172), 20140394 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Moser, R.: Partial Regularity for Harmonic Maps and Related Problems. World Scientific Publishing Co. Pte. Ltd., Hackensack (2005)CrossRefzbMATHGoogle Scholar
  23. 23.
    Papanicolaou, N., Tomaras, T.: Dynamics of magnetic vortices. Nucl. Phys. B 360(2–3), 425–462 (1991)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Papanicolaou, N., Zakrezewski, W.: Dynamics of interacting magnetic vortices in a model Landau–Lifshitz equation. Physica D Nonlinear Phenom. 80(3), 225–245 (1995)ADSCrossRefzbMATHGoogle Scholar
  25. 25.
    Schütte, C., Garst, M.: Magnon-skyrmion scattering in chiral magnets. Phys. Rev. B 90(9), 094423 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    Yan, P., Kamra, A., Cao, Y., Bauer, G.E.: Angular and linear momentum of excited ferromagnets. Phys. Rev. B 88(14), 144413 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    Zhou, Y., Iacocca, E., Awad, A.A., Dumas, R.K., Zhang, F., Braun, H.B., Åkerman, J.: Dynamically stabilized magnetic skyrmions. Nat. Commun. 6, 8193 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Mathematics & JARA-FITRWTH Aachen UniversityAachenGermany

Personalised recommendations