Advertisement

Letters in Mathematical Physics

, Volume 109, Issue 11, pp 2485–2490 | Cite as

Unusual sum rule for Clebsch–Gordan coefficients

  • Jean-Christophe PainEmail author
Article

Abstract

We present a new sum rule for Clebsch–Gordan coefficients using generalized characters of irreducible representations of the rotation group. The identity is obtained from an integral involving Gegenbauer ultraspherical polynomials. A similar procedure can be applied for other types of integrals of such polynomials and may therefore lead to the derivation of further new relations.

Keywords

Clebsch–Gordan coefficients 3j symbols Sum rules 

Mathematics Subject Classification

81R05 20C35 22E70 

Notes

References

  1. 1.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions, Applied Mathematics Series 55. U. S. Government Printing Office, Washington (1964)zbMATHGoogle Scholar
  2. 2.
    Ancarani, L.U.: New sum rules for Racah and Clebsch–Gordan coefficients. J. Phys. A Math. Gen. 26, 2225–2231 (1993)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Askey, R.: An integral of products of Legendre functions and a Clebsch–Gordan sum. Lett. Math. Phys. 6, 299–302 (1982)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Brudno, S., Louck, J.D.: Nontrivial zeros of weight-1 \(3j\) and \(6j\) coefficients: relation to Diophantine equations of equal sums of like powers. J. Math. Phys. 26, 2092–2095 (1985)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Casini, R.: Algebraic proof of a sum rule occurring in Stark broadening of hydrogen lines. J. Math. Phys. 38, 3435–3445 (1997)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Cowan, R.D.: The Theory of Atomic Structure and Spectra. University of California Press, Berkeley (1981)Google Scholar
  7. 7.
    De Meyer, H.E., Vanden Berghe, G.: A general set of relations involving \(3-j\) symbols. J. Phys. A Math. Gen. 11, 697–707 (1978)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Din, A.M.: A simple sum formula for Clebsch–Gordan coefficients. Lett. Math. Phys. 5, 207–211 (1981)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Dunlap, B.I., Judd, B.R.: Novel identities for simple \(n-j\) symbols. J. Math. Phys. 16, 318–319 (1975)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Edmonds, A.R.: Angular Momentum in Quantum Mechanics. Princeton University Press, Princeton (1957)CrossRefGoogle Scholar
  11. 11.
    Elbaz, E.: Usual and unusual summation rules over \(j\) angular momentum. J. Math. Phys. 26, 728–731 (1985)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Gazeau, J.-P., Kibler, M.: On some special relations involving \(3-jm\) symbols. Lect. Notes Phys. 135, 487–491 (1980)ADSCrossRefGoogle Scholar
  13. 13.
    Ginocchio, J.N.: A new identity for some six \(j\) symbols. J. Math. Phys. 32, 1430–1432 (1991)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series and Products. Academic Press, New York (1980)zbMATHGoogle Scholar
  15. 15.
    Kancerevicius, A.: Single sums of \(6j\) coefficients. Litov. Fiz. Sb. 30, 643–649 (1990)Google Scholar
  16. 16.
    Klarsfeld, S., Maquet, A.: Dipole sum rules for products of \(3-j\) symbols. J. Phys. A Math. Gen. 11, 1241–1243 (1978)ADSCrossRefGoogle Scholar
  17. 17.
    Laursen, M.L., Mita, K.: Some integrals involving associated Legendre functions and Gegenbauer polynomials. J. Phys. A Math. Gen. 14, 1065–1068 (1981)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Minnaert, P., Toshev, S.: Racah sum rule and Biedenharn–Elliott Identity for the super-rotation \(6-j\) symbols. J. Math. Phys. 35, 5057–5064 (1994)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Morgan III, J.D.: Further relations involving \(3-j\) symbols. J. Phys. A Math. Gen. 9, 1231–1233 (1976)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Morgan III, J.D.: A derivation of some recently discovered relations involving \(3-j\) symbols. J. Phys. A Math. Gen. 10, 1059–1062 (1977)ADSCrossRefGoogle Scholar
  21. 21.
    Pain, J.-C., Gilleron, F.: Characterization of anomalous Zeeman patterns in complex atomic spectra. Phys. Rev. A 85, 033409 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    Rahman, M., Shah, M.J.: Sums of products of ultraspherical functions. J. Math. Phys. 26, 627–632 (1985)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Rashid, M.A.: Proof of interesting relations involving \(3-j\) symbols. J. Phys. A Math. Gen. 9, L1–L3 (1976)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Talman, J.D.: Special Functions. Benjamin, New York (1968)zbMATHGoogle Scholar
  25. 25.
    Vanden Berghe, G., De Meyer, H.: Comment on ’An interesting relation involving \(3-j\) symbols’. J. Phys. A Math. Gen. 9, L5–L7 (1976)ADSCrossRefGoogle Scholar
  26. 26.
    van Haeringen, H.: A class of sums of Gegenbauer functions: twentyfour sums in closed form. J. Math. Phys. 27, 938–952 (1986)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Varshalovich, D.A., Moskalev, A.N., Khersonskii, V.K.: Quantum Theory of Angular Momentum. World Scientific, Singapore (1988)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.CEA, DAM, DIFArpajonFrance

Personalised recommendations