High density limit of the Fermi polaron with infinite mass
- 7 Downloads
Abstract
We analyze the ground state energy for N identical fermions in a two-dimensional box of volume \(L^2\) interacting with an external point scatterer. Since the point scatterer can be considered as an impurity particle of infinite mass, this system is a limit case of the Fermi polaron. We prove that its ground state energy in the limit of high density \(N/L^2\gg 1\) is given by the polaron energy. The polaron energy is an energy estimate based on trial states up to first order in particle-hole expansion, which was proposed by Chevy (Phys Rev A 74:063628, 2006) in the physics literature. The relative error in our result is shown to be small uniformly in L. Hence, we do not require a gap of fixed size in the spectrum of the Laplacian on the box. The strategy of our proof relies on a twofold Birman–Schwinger type argument applied to the many-particle Hamiltonian of the system.
Keywords
Point interaction Fermi polaron Energy asymptotics Thermodynamic limitMathematics Subject Classification
Primary 81V70 Secondary 35P15Notes
Acknowledgements
We thank Marcel Griesemer for extended discussions and helpful remarks. Our work was supported by the Deutsche Forschungsgemeinschaft (DFG) through the Research Training Group 1838: Spectral Theory and Dynamics of Quantum Systems.
References
- 1.Albeverio, S., Gesztesy, F., Høegh-Krohn, R., Holden, H.: Solvable Models in Quantum Mechanics, second edn. AMS Chelsea Publishing, Madison (2005)zbMATHGoogle Scholar
- 2.Albeverio, S., Kurasov, P.: Singular Perturbations of Differential Operators. Cambridge University Press, Cambridge (2000)CrossRefzbMATHGoogle Scholar
- 3.Bruun, G.M., Massignan, P.: Decay of polarons and molecules in a strongly polarized Fermi gas. Phys. Rev. Lett. 105, 020403 (2010)ADSCrossRefGoogle Scholar
- 4.Chevy, F.: Universal phase diagram of a strongly interacting fermi gas with unbalanced spin populations. Phys. Rev. A 74, 063628 (2006)ADSCrossRefGoogle Scholar
- 5.Combescot, R., Giraud, S.: Normal state of highly polarized Fermi gases: full many-body treatment. Phys. Rev. Lett. 101, 050404 (2008)ADSCrossRefGoogle Scholar
- 6.Correggi, M., Dell’Antonio, G.F., Finco, D., Michelangeli, A., Teta, A.: Stability for a system of \(N\) fermions plus a different particle with zero-range interactions. Rev. Math. Phys. 24(7), 1250017 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
- 7.Dell’Antonio, G.F., Figari, R., Teta, A.: Hamiltonians for systems of \(N\) particles interacting through point interactions. Ann. Inst. H. Poincaré Phys. Théor. 60(3), 253–290 (1994)MathSciNetzbMATHGoogle Scholar
- 8.Dimock, J., Rajeev, S.G.: Multi-particle Schrödinger operators with point interactions in the plane. J. Phys. A 37(39), 9157–9173 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 9.Griesemer, M., Linden, U.: Spectral theory of the Fermi polaron (preprint) (2018). arXiv:1805.07229
- 10.Griesemer, M., Linden, U.: Stability of the two-dimensional Fermi polaron. Lett. Math. Phys. 108(8), 1837–1849 (2018)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 11.Linden, U.: Energy estimates for the two-dimensional Fermi polaron. PhD thesis, University of Stuttgart (2017)Google Scholar
- 12.Minlos, R.: On point-like interaction between \(n\) fermions and another particle. Mosc. Math. J. 11(1), 113–127 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
- 13.Mora, C., Chevy, F.: Ground state of a tightly bound composite dimer immersed in a fermi sea. Phys. Rev. A 80, 033607 (2009)ADSCrossRefGoogle Scholar
- 14.Moser, T., Seiringer, R.: Stability of a fermionic \(N+1\) particle system with point interactions. Commun. Math. Phys. 356(1), 329–355 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 15.Moser, T., Seiringer, R.: Energy contribution of a point-interacting impurity in a Fermi gas. Ann. Henri Poincaré (2019). https://doi.org/10.1007/s00023-018-00757-0
- 16.Parish, M.M.: Polaron-molecule transitions in a two-dimensional Fermi gas. Phys. Rev. A 83, 051603 (2011)ADSCrossRefGoogle Scholar
- 17.Parish, M.M., Levinsen, J.: Highly polarized Fermi gases in two dimensions. Phys. Rev. A 87, 033616 (2013)ADSCrossRefGoogle Scholar
- 18.Prokof’ev, N., Svistunov, B.: Fermi-polaron problem: diagrammatic monte carlo method for divergent sign-alternating series. Phys. Rev. B 77, 020408 (2008)ADSCrossRefGoogle Scholar
- 19.Punk, M., Dumitrescu, P.T., Zwerger, W.: Polaron-to-molecule transition in a strongly imbalanced fermi gas. Phys. Rev. A 80, 053605 (2009)ADSCrossRefGoogle Scholar
- 20.Reed, M., Simon, B.: Methods of Modern Mathematical Physics. I. Functional Analysis, 2nd edn. Academic Press, New York (1980)zbMATHGoogle Scholar
- 21.Reed, M., Simon, B.: Methods of Modern Mathematical Physics. IV. Analysis of Operators. Academic Press, New York, London (1978)zbMATHGoogle Scholar
- 22.Schmidt, R., Enss, T.: Excitation spectra and rf response near the polaron-to-molecule transition from the functional renormalization group. Phys. Rev. A 83, 063620 (2011)ADSCrossRefGoogle Scholar
- 23.Schmidt, R., Enss, T., Pietilä, V., Demler, E.: Fermi polarons in two dimensions. Phys. Rev. A 85, 021602 (2012)ADSCrossRefGoogle Scholar