Advertisement

High density limit of the Fermi polaron with infinite mass

  • Ulrich LindenEmail author
  • David Mitrouskas
Article
  • 7 Downloads

Abstract

We analyze the ground state energy for N identical fermions in a two-dimensional box of volume \(L^2\) interacting with an external point scatterer. Since the point scatterer can be considered as an impurity particle of infinite mass, this system is a limit case of the Fermi polaron. We prove that its ground state energy in the limit of high density \(N/L^2\gg 1\) is given by the polaron energy. The polaron energy is an energy estimate based on trial states up to first order in particle-hole expansion, which was proposed by Chevy (Phys Rev A 74:063628, 2006) in the physics literature. The relative error in our result is shown to be small uniformly in L. Hence, we do not require a gap of fixed size in the spectrum of the Laplacian on the box. The strategy of our proof relies on a twofold Birman–Schwinger type argument applied to the many-particle Hamiltonian of the system.

Keywords

Point interaction Fermi polaron Energy asymptotics Thermodynamic limit 

Mathematics Subject Classification

Primary 81V70 Secondary 35P15 

Notes

Acknowledgements

We thank Marcel Griesemer for extended discussions and helpful remarks. Our work was supported by the Deutsche Forschungsgemeinschaft (DFG) through the Research Training Group 1838: Spectral Theory and Dynamics of Quantum Systems.

References

  1. 1.
    Albeverio, S., Gesztesy, F., Høegh-Krohn, R., Holden, H.: Solvable Models in Quantum Mechanics, second edn. AMS Chelsea Publishing, Madison (2005)zbMATHGoogle Scholar
  2. 2.
    Albeverio, S., Kurasov, P.: Singular Perturbations of Differential Operators. Cambridge University Press, Cambridge (2000)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bruun, G.M., Massignan, P.: Decay of polarons and molecules in a strongly polarized Fermi gas. Phys. Rev. Lett. 105, 020403 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    Chevy, F.: Universal phase diagram of a strongly interacting fermi gas with unbalanced spin populations. Phys. Rev. A 74, 063628 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    Combescot, R., Giraud, S.: Normal state of highly polarized Fermi gases: full many-body treatment. Phys. Rev. Lett. 101, 050404 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    Correggi, M., Dell’Antonio, G.F., Finco, D., Michelangeli, A., Teta, A.: Stability for a system of \(N\) fermions plus a different particle with zero-range interactions. Rev. Math. Phys. 24(7), 1250017 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dell’Antonio, G.F., Figari, R., Teta, A.: Hamiltonians for systems of \(N\) particles interacting through point interactions. Ann. Inst. H. Poincaré Phys. Théor. 60(3), 253–290 (1994)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Dimock, J., Rajeev, S.G.: Multi-particle Schrödinger operators with point interactions in the plane. J. Phys. A 37(39), 9157–9173 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Griesemer, M., Linden, U.: Spectral theory of the Fermi polaron (preprint) (2018). arXiv:1805.07229
  10. 10.
    Griesemer, M., Linden, U.: Stability of the two-dimensional Fermi polaron. Lett. Math. Phys. 108(8), 1837–1849 (2018)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Linden, U.: Energy estimates for the two-dimensional Fermi polaron. PhD thesis, University of Stuttgart (2017)Google Scholar
  12. 12.
    Minlos, R.: On point-like interaction between \(n\) fermions and another particle. Mosc. Math. J. 11(1), 113–127 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Mora, C., Chevy, F.: Ground state of a tightly bound composite dimer immersed in a fermi sea. Phys. Rev. A 80, 033607 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    Moser, T., Seiringer, R.: Stability of a fermionic \(N+1\) particle system with point interactions. Commun. Math. Phys. 356(1), 329–355 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Moser, T., Seiringer, R.: Energy contribution of a point-interacting impurity in a Fermi gas. Ann. Henri Poincaré (2019).  https://doi.org/10.1007/s00023-018-00757-0
  16. 16.
    Parish, M.M.: Polaron-molecule transitions in a two-dimensional Fermi gas. Phys. Rev. A 83, 051603 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    Parish, M.M., Levinsen, J.: Highly polarized Fermi gases in two dimensions. Phys. Rev. A 87, 033616 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    Prokof’ev, N., Svistunov, B.: Fermi-polaron problem: diagrammatic monte carlo method for divergent sign-alternating series. Phys. Rev. B 77, 020408 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    Punk, M., Dumitrescu, P.T., Zwerger, W.: Polaron-to-molecule transition in a strongly imbalanced fermi gas. Phys. Rev. A 80, 053605 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics. I. Functional Analysis, 2nd edn. Academic Press, New York (1980)zbMATHGoogle Scholar
  21. 21.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics. IV. Analysis of Operators. Academic Press, New York, London (1978)zbMATHGoogle Scholar
  22. 22.
    Schmidt, R., Enss, T.: Excitation spectra and rf response near the polaron-to-molecule transition from the functional renormalization group. Phys. Rev. A 83, 063620 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    Schmidt, R., Enss, T., Pietilä, V., Demler, E.: Fermi polarons in two dimensions. Phys. Rev. A 85, 021602 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Fachbereich MathematikUniversität StuttgartStuttgartGermany

Personalised recommendations