Matrix versions of the Hellinger distance
- 33 Downloads
Abstract
On the space of positive definite matrices, we consider distance functions of the form \(d(A,B)=\left[ \mathrm{tr}\mathcal {A}(A,B)-\mathrm{tr}\mathcal {G}(A,B)\right] ^{1/2},\) where \(\mathcal {A}(A,B)\) is the arithmetic mean and \(\mathcal {G}(A,B)\) is one of the different versions of the geometric mean. When \(\mathcal {G}(A,B)=A^{1/2}B^{1/2}\) this distance is \(\Vert A^{1/2}-B^{1/2}\Vert _2,\) and when \(\mathcal {G}(A,B)=(A^{1/2}BA^{1/2})^{1/2}\) it is the Bures–Wasserstein metric. We study two other cases: \(\mathcal {G}(A,B)=A^{1/2}(A^{-1/2}BA^{-1/2})^{1/2}A^{1/2},\) the Pusz–Woronowicz geometric mean, and \(\mathcal {G}(A,B)=\exp \big (\frac{\log A+\log B}{2}\big ),\) the log Euclidean mean. With these choices, d(A, B) is no longer a metric, but it turns out that \(d^2(A,B)\) is a divergence. We establish some (strict) convexity properties of these divergences. We obtain characterisations of barycentres of m positive definite matrices with respect to these distance measures. One of these leads to a new interpretation of a power mean introduced by Lim and Palfia, as a barycentre. The other uncovers interesting relations between the log Euclidean mean and relative entropy.
Keywords
Geometric mean Matrix divergence Bregman divergence Relative entropy Strict convexity BarycentreMathematics Subject Classification
15B48 49K35 94A17 81P45Notes
Acknowledgements
The authors thank F. Hiai and S. Sra for helpful comments and references, and the anonymous referee for a careful reading of the manuscript. The first author is grateful to INRIA and Ecole polytechnique, Palaiseau for visits that facilitated this work, and to CSIR(India) for the award of a Bhatnagar Fellowship.
References
- 1.Abatzoglou, T.J.: Norm derivatives on spaces of operators. Math. Ann. 239, 129–135 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
- 2.Agueh, M., Carlier, G.: Barycenters in the Wasserstein space. SIAM J. Math. Anal. Appl. 43, 904–924 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
- 3.Aiken, J.G., Erdos, J.A., Goldstein, J.A.: Unitary approximation of positive operators. Illinois J. Math. 24, 61–72 (1980)MathSciNetzbMATHGoogle Scholar
- 4.Amari, S.: Information Geometry and its Applications. Springer, Tokyo (2016)CrossRefzbMATHGoogle Scholar
- 5.Ando, T.: Concavity of certain maps on positive definite matrices and applications to Hadamard products. Linear Algebra Appl. 26, 203–241 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
- 6.Ando, T., Li, C.-K., Mathias, R.: Geometric means. Linear Algebra Appl. 385, 305–334 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
- 7.Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Geometric means in a novel vector space structure on symmetric positive-definite matrices. SIAM J. Math. Anal. Appl. 29, 328–347 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
- 8.Banerjee, A., Merugu, S., Dhillon, I.S., Ghosh, J.: Clustering with Bregman divergences. J. Mach. Learn. Res. 6, 1705–1749 (2005)MathSciNetzbMATHGoogle Scholar
- 9.Barbaresco, F.: Innovative tools for radar signal processing based on Cartan’s geometry of SPD matrices and information geometry. In: IEEE Radar Conference, Rome (2008)Google Scholar
- 10.Bauschke, H.H., Borwein, J.M.: Legendre functions and the method of random Bregman projections. J. Convex Anal. 4, 27–67 (1997)MathSciNetzbMATHGoogle Scholar
- 11.Bauschke, H.H., Borwein, J.M.: Joint and separate convexity of the Bregman distance. Stud. Comput. Math. 8, 23–36 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
- 12.Bengtsson, I., Zyczkowski, K.: Geometry of Quantum States: An Introduction to Quantum Entanglement. Cambridge University Press, Cambridge (2006)CrossRefzbMATHGoogle Scholar
- 13.Bhagwat, K.V., Subramanian, R.: Inequalities between means of positive operators. Math. Proc. Camb. Philos. Soc. 83, 393–401 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
- 14.Bhatia, R.: Matrix Analysis. Springer, Tokyo (1997)CrossRefzbMATHGoogle Scholar
- 15.Bhatia, R.: Positive Definite Matrices. Princeton University Press, Princeton (2007)zbMATHGoogle Scholar
- 16.Bhatia, R.: The Riemannian mean of positive matrices. In: Nielsen, F., Bhatia, R. (eds.) Matrix Information Geometry, pp. 35–51. Springer, Tokyo (2013)CrossRefGoogle Scholar
- 17.Bhatia, R., Grover, P.: Norm inequalities related to the matrix geometric mean. Linear Algebra Appl. 437, 726–733 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
- 18.Bhatia, R., Jain, T., Lim, Y.: On the Bures-Wasserstein distance between positive definite matrices. Expos. Math. (2018). https://doi.org/10.1016/j.exmath.2018.01.002
- 19.Bhatia, R., Jain, T., Lim, Y.: Strong convexity of sandwiched entropies and related optimization problems. Rev. Math. Phys. 30, 1850014 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
- 20.Carlen, E.A., Lieb, E.H.: A Minkowski type trace inequality and strong subadditivity of quantum entropy. Adv. Math. Sci. AMS Transl. 180, 59–68 (1999)MathSciNetzbMATHGoogle Scholar
- 21.Carlen, E.A., Lieb, E.H.: A Minkowski type trace inequality and strong subadditivity of quantum entropy. II. Convexity and concavity. Lett. Math. Phys. 83, 107–126 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 22.Chebbi, Z., Moakher, M.: Means of Hermitian positive-definite matrices based on the log-determinant \(\alpha \)-divergence function. Linear Algebra Appl. 436, 18721889 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
- 23.Dhillon, I.S., Tropp, J.A.: Matrix nearness problems with Bregman divergences. SIAM J. Matrix Anal. Appl. 29, 1120–1146 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
- 24.Fletcher, P., Joshi, S.: Riemannian geometry for the statistical analysis of diffusion tensor data. Signal Process. 87, 250–262 (2007)CrossRefzbMATHGoogle Scholar
- 25.Hiai, F., Mosonyi, M., Petz, D., Beny, C.: Quantum f-divergences and error correction. Rev. Math. Phys. 23, 691–747 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
- 26.Jencová, A.: Geodesic distances on density matrices. J. Math. Phys. 45, 1787–1794 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 27.Jencova, A., Ruskai, M.B.: A unified treatment of convexity of relative entropy and related trace functions with conditions for equality. Rev. Math. Phys. 22, 1099–1121 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
- 28.Lim, Y., Palfia, M.: Matrix power means and the Karcher mean. J. Funct. Anal. 262, 1498–1514 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
- 29.Modin, K.: Geometry of matrix decompositions seen through optimal transport and information geometry. J. Geom. Mech. 9, 335–390 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
- 30.Nielsen, F., Bhatia, R. (eds.): Matrix Information Geometry. Springer, Tokyo (2013)Google Scholar
- 31.Nielsen, F., Boltz, S.: The Burbea-Rao and Bhattacharyya centroids. IEEE Trans. Inf. Theory 57, 5455–5466 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
- 32.Pitrik, J., Virosztek, D.: On the joint convexity of the Bregman divergence of matrices. Lett. Math. Phys. 105, 675–692 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 33.Pusz, W., Woronowicz, S.L.: Functional calculus for sesquilinear forms and the purification map. Rep. Math. Phys. 8, 159–170 (1975)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 34.Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)CrossRefzbMATHGoogle Scholar
- 35.Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Tokyo (1998)CrossRefzbMATHGoogle Scholar
- 36.Sra, S.: Positive definite matrices and the \(S\)-divergence. Proc. Am. Math. Soc. 144, 2787–2797 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
- 37.Takatsu, A.: Wasserstein geometry of Gaussian measures. Osaka J. Math. 48, 1005–1026 (2011)MathSciNetzbMATHGoogle Scholar