Advertisement

Routh reduction for first-order Lagrangian field theories

  • Santiago Capriotti
  • Eduardo García-Toraño AndrésEmail author
Article

Abstract

We present a reduction theory for first-order Lagrangian field theories which takes into account the conservation of momenta. The relation between the solutions of the original problem with a prescribed value of the momentum and the solutions of the reduced problem is established. An illustrative example is discussed in detail.

Keywords

Lagrangian field theory Reduction Momentum Symmetry 

Notes

Acknowledgements

S. Capriotti thanks the CONICET for financial support. We would like to thank the referees for their valuable suggestions.

References

  1. 1.
    Capriotti, S.: Routh reduction and Cartan mechanics. J. Geom. Phys. 114, 23–64 (2017)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Cariñena, J., Crampin, M., Ibort, A.: On the multisymplectic formalism for first order field theories. Differ. Geom. Appl. 1(4), 345–374 (1991)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Castrillón López, M., García Pérez, P., Ratiu, T.: Euler–Poincaré reduction on principal bundles. Lett. Math. Phys. 58(2), 167–180 (2001)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Castrillón López, M., Ratiu, T.: Reduction in principal bundles: covariant Lagrange–Poincaré equations. Commun. Math. Phys. 236(2), 223–250 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    Castrillón López, M., Ratiu, T., Shkoller, S.: Reduction in principal fiber bundles: covariant Euler–Poincaré equations. Proc. Am. Math. Soc. 128(7), 2155–2164 (2000)CrossRefGoogle Scholar
  6. 6.
    Echeverría-Enríquez, A., Muñoz-Lecanda, M., Román-Roy, N.: Geometry of Lagrangian first-order classical field theories. Fortschr. Phys. 44(3), 235–280 (1996)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Echeverría-Enríquez, A., Muñoz Lecanda, M., Román-Roy, N.: Remarks on multisymplectic reduction. Rep. Math. Phys. 81(3), 415–424 (2018)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Ellis, D., Gay-Balmaz, F., Holm, D., Ratiu, T.: Lagrange–Poincaré field equations. J. Geom. Phys. 61(11), 2120–2146 (2011)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    García-Toraño Andrés, E., Mestdag, T., Yoshimura, H.: Implicit Lagrange–Routh equations and Dirac reduction. J. Geom. Phys. 104, 291–304 (2016)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Gay-Balmaz, F., Ratiu, T.: A new Lagrangian dynamic reduction in field theory. Ann. Inst. Fourier (Grenoble) 60(3), 1125–1160 (2010)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Gotay, M.: An exterior differential systems approach to the Cartan form. In: Symplectic Geometry and Mathematical Physics (Aix-en-Provence, 1990), Volume 99 of Progress in Mathematics, pp. 160–188. Birkhäuser Boston, Boston, MA (1991)CrossRefGoogle Scholar
  12. 12.
    Gotay, M., Isenberg, J., Marsden, J., Montgomery, R.: Momentum Maps and Classical Fields. Part I: Covariant Field Theory (1998). arXiv:physics/9801019 (preprint)
  13. 13.
    Grabowska, K., Urbański, P.: Geometry of Routh reduction (2017). arXiv:1708.09769 (preprint)
  14. 14.
    Griffiths, P.: Exterior Differential Systems and the Calculus of Variations, Volume 25 of Progress in Mathematics. Birkhäuser, Boston (1983)CrossRefGoogle Scholar
  15. 15.
    Hsu, L.: Calculus of variations via the Griffiths formalism. J. Differ. Geom. 36(3), 551–589 (1992)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol. I. Wiley Classics Library. Wiley, New York (1996) (reprint of the 1963 original, A Wiley-Interscience Publication)Google Scholar
  17. 17.
    Krupka, D.: Introduction to Global Variational Geometry, Volume 1 of Atlantis Studies in Variational Geometry. Atlantis Press, Paris (2015)CrossRefGoogle Scholar
  18. 18.
    Langerock, B., Cantrijn, F., Vankerschaver, J.: Routhian reduction for quasi-invariant Lagrangians. J. Math. Phys. 51(2), 022902 (2010). 20ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Marrero, J., Román-Roy, N., Salgado, M., Vilariño, S.: Reduction of polysymplectic manifolds. J. Phys. A 48(5), 055206 (2015). 43ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Marsden, J.: Lectures on Mechanics, Volume 174 of London Mathematical Society Lecture Note Series. Cambridge UniversityPress, Cambridge (1992)Google Scholar
  21. 21.
    Marsden, J., Ratiu, T., Scheurle, J.: Reduction theory and the Lagrange–Routh equations. J. Math. Phys. 41(6), 3379–3429 (2000)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Mestdag, T., Crampin, M.: Invariant Lagrangians, mechanical connections and the Lagrange–Poincaré equations. J. Phys. A 41(34), 344015 (2008). 20MathSciNetCrossRefGoogle Scholar
  23. 23.
    Saunders, D.: The Geometry of Jet Bundles, Volume 142 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (1989)Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Departamento de MatemáticaUniversidad Nacional del SurBahía BlancaArgentina
  2. 2.Instituto de Matemática de Bahía Blanca (INMABB)CONICETBahía BlancaArgentina

Personalised recommendations