Advertisement

Letters in Mathematical Physics

, Volume 109, Issue 3, pp 699–724 | Cite as

Supersymmetry and cohomology of graph complexes

  • Serguei BarannikovEmail author
Article

Abstract

I describe a combinatorial construction of the cohomology classes in compactified moduli spaces of curves \(\widehat{Z}_{I}\in H^{*}\left( \bar{\mathcal {M}}_{g,n}\right) \) starting from the following data: \(\mathbb {Z}/2\mathbb {Z}\)-graded finite-dimensional associative algebra equipped with odd scalar product and an odd compatible derivation I, whose square is nonzero in general, \(I^{2}\ne 0\). As a byproduct I obtain a new combinatorial formula for products of \(\psi \)-classes, \(\psi _{i}=c_{1}\left( T_{p_{i}}^{*}\right) \), in the cohomology \(H^{*}\left( \bar{\mathcal {M}}_{g,n}\right) \).

Keywords

Mirror symmetry Graph complexes Gromov–Witten invariants Moduli spaces 

Mathematics Subject Classification

Primary 14J33 53D37 81Q30 Secondary 05A15 

Notes

Acknowledgements

The results of this paper were presented starting from 2006 at conferences in Cambridge, Berkeley, Grenoble, Miami, Vienna, Brno, Tokyo, Moscow, Boston. I am thankful to organizers of these conferences for their hospitality, for the opportunity to present these results to large audience and to the participants for interesting questions and comments. The author is partially supported by Laboratory of Mirror Symmetry NRU HSE, RF Government grant, Ag. No 14.641.31.0001.

References

  1. 1.
    Barannikov, S.: Modular operads and non-commutative Batalin–Vilkovisky geometry. Preprint MPIM(Bonn) 04/2006. IMRN Vol. 2007: rnm075 (2007)Google Scholar
  2. 2.
    Barannikov, S.: Matrix de Rham complex and quantum A-infinity algebras. Lett. Math. Phys. 104, 373 (2014). (Preprint HAL-00378776 (2009))ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Barannikov, S.: Noncommmutative Batalin–Vilkovisky geometry and matrix integrals. C. R. Math. 348, 359–362 (2009). (Preprint HAL-00102085 (2006))MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Barannikov, S.: Feynman transforms and cohomological field theories. Preprint HAL-01804639 (2018)Google Scholar
  5. 5.
    Barannikov, S.: Nondegenerate critical points, Morse–Darboux lemma and propagators in BV formalism. Preprint HAL-01755119Google Scholar
  6. 6.
    Bernstein, J.N., Leites, D.A.: The superalgebra \(Q(n)\), the odd trace, and the odd determinant. Dokl. Bolg. Akad. Nauk 35(3), 285–286 (1982)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Getzler, E., Kapranov, M.: Modular operads. Compos. Math. 110(1), 65–126 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Kontsevich, M.: Intersection theory on the moduli space of curves and the matrix Airy function. Commun. Math. Phys. 147(1), 1–23 (1992)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Kontsevich, M.: Feynman diagrams and low-dimensional topology. In: Progr. Math., vol. 120, pp. 97–121. Birkhauser, Basel (1994)Google Scholar
  10. 10.
    Thomson, R.C.: Pencils of complex and real symmetric and skew matrices. Linear Algebra Appl 147, 323–371 (1991)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.UMR7586 CNRSInstitut de mathématiques de JussieuParisFrance
  2. 2.National Research University Higher School of EconomicsMoscowRussian Federation

Personalised recommendations