Letters in Mathematical Physics

, Volume 109, Issue 3, pp 643–659 | Cite as

On twisted reality conditions

  • Tomasz BrzezińskiEmail author
  • Ludwik Dąbrowski
  • Andrzej Sitarz


We study the twisted reality condition of Brzeziński et al. (Math Phys Anal Geom 19(3):11, 2016), for spectral triples, in particular with respect to the product and the commutant. Motivated by this, we present the procedure, which allows one to untwist the twisted spectral triples studied in Landi and Martinetti (Lett Math Phys 106:1499–1530, 2016). We also relate this construction to conformally rescaled real twisted spectral triples and discuss the untwisting of the “minimal twist” procedure of an even spectral triple.


Spectral triple Twisted spectral triple Twisted reality conditions Minimal twist 

Mathematics Subject Classification

58B34 58B32 46L87 



The authors would like to thank for hospitality the Institute of Mathematics of Polish Academy of Sciences (IMPAN), where the work on the present note started. Likewise, the first two authors are grateful for the hospitality of the Faculty of Physics, Astronomy and Applied Computer Science of the Jagiellonian University in Kraków, where the work was completed. The research of all authors is partially supported by the Polish National Science Centre Grant 2016/21/B/ST1/02438.


  1. 1.
    Brzeziński, T., Ciccoli, N., Dąbrowski, L., Sitarz, A.: Twisted reality condition for Dirac operators. Math. Phys. Anal. Geom. 19(3), 11 (2016)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Connes, A., Marcolli, M.: Noncommutative Geometry, Quantum Fields and Motives. American Mathematical Society Colloquium Publications, vol. 55, American Mathematical Society, Providence; Hindustan Book Agency, New Delhi (2008)Google Scholar
  3. 3.
    Connes, A., Moscovici, H.: Type III and spectral triples. In: Traces in Number Theory, Geometry and Quantum Fields, Aspects Mathematics, vol. E38, pp. 57–71. Friedrich Vieweg, Wiesbaden (2008)Google Scholar
  4. 4.
    Crawley-Boevey, W., Etingof, P., Ginzburg, V.: Noncommutative geometry and quiver algebras. Adv. Math. 209, 274–336 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Dąbrowski, L., Sitarz, A.: Twisted reality condition for spectral triple on two points. In: PoS (CORFU2015) 093 (2015)Google Scholar
  6. 6.
    Dąbrowski, L., Dossena, G.: Product of real spectral triples. Int. J. Geom. Methods Mod. Phys. 8(8), 1833–1848 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Devastato, A., Farnsworth, S., Lizzi, F., Martinetti, P.: Lorentz signature and twisted spectral triples. JHEP 03, 89 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Devastato, A., Lizzi, F., Martinetti, P.: Grand symmetry, spectral action and the Higgs mass. JHEP 01, 042 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1995) (reprint of the 1980 edition)Google Scholar
  10. 10.
    Landi, G., Martinetti, P.: On twisting real spectral triples by algebra automorphisms. Lett. Math. Phys. 106, 1499–1530 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Landi, G., Martinetti, P.: Gauge transformations for twisted spectral triples. Lett. Math. Phys. (2018). MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of MathematicsSwansea UniversitySwanseaUK
  2. 2.Department of MathematicsUniversity of BiałystokBiałystokPoland
  3. 3.SISSA (Scuola Internazionale Superiore di Studi Avanzati)TriesteItaly
  4. 4.Institute of PhysicsJagiellonian UniversityKrakówPoland
  5. 5.Institute of Mathematics of the Polish Academy of SciencesWarszawaPoland

Personalised recommendations