Advertisement

Letters in Mathematical Physics

, Volume 109, Issue 1, pp 187–224 | Cite as

Covariance in the Batalin–Vilkovisky formalism and the Maurer–Cartan equation for curved Lie algebras

  • Ezra GetzlerEmail author
Article

Abstract

We express covariance of the Batalin–Vilkovisky formalism in classical mechanics by means of the Maurer–Cartan equation in a curved Lie superalgebra, defined using the formal variational calculus and Sullivan’s Thom–Whitney construction. We use this framework to construct a Batalin–Vilkovisky canonical transformation identifying the Batalin–Vilkovisky formulation of the spinning particle with an AKSZ field theory.

Keywords

Spinning particle Batalin–Vilkovisky field theory Variational calculus Supergravity Thom–Whitney normalization 

Mathematics Subject Classification

70S05 37K05 

Notes

Acknowledgements

I am grateful to Chris Hull for introducing me to the first-order formalism of the spinning particle, and to Si Li, Pavel Mnëv and Sean Pohorence for further insights. This research is partially supported by EPSRC Programme Grant EP/K034456/1 “New Geometric Structures from String Theory”, a Fellowship of the Simons Foundation, and Collaboration Grants #243025 and #524522 of the Simons Foundation. Parts of this paper were written while the author was visiting the Yau Mathematical Sciences Center at Tsinghua University and the Department of Mathematics of Columbia University, as a guest of Si Li and Mohammed Abouzaid, respectively.

References

  1. 1.
    Alexandrov, M., Schwarz, A., Zaboronsky, O., Kontsevich, M.: The geometry of the master equation and topological quantum field theory. Int. J. Mod. Phys. A 12(7), 1405–1429 (1997)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Axelrod, S., Singer, I.M.: Chern–Simons perturbation theory. In: Proceedings of the XXth International Conference on Differential Geometric Methods in Theoretical Physics, vol. 1, 2, New York, 1991. World Sci. Publ., River Edge, NJ, pp. 3–45 (1992)Google Scholar
  3. 3.
    Bousfield, A.K., Gugenheim, V.K.A.M.: On PL de Rham theory and rational homotopy type. Mem. Amer. Math. Soc. 8(179), 1 (1976)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Cattaneo, A.S., Felder, G.: A path integral approach to the Kontsevich quantization formula. Commun. Math. Phys. 212(3), 591–611 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cattaneo, A.S., Felder, G.: On the AKSZ formulation of the Poisson sigma model. Lett. Math. Phys. 56(2), 163–179 (2001). (EuroConférence Moshé Flato 2000, Part II (Dijon)) MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cattaneo, A.S., Mnev, P., Reshetikhin, N.: Classical BV theories on manifolds with boundary. Commun. Math. Phys. 332(2), 535–603 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cattaneo, A.S., Schiavina, M.: On time. Lett. Math. Phys. 107(2), 375–408 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cattaneo, Alberto S., Schiavina, M., Selliah, I.: BV-equivalence between triadic gravity and BF theory in three dimensions. arXiv:1707.07764
  9. 9.
    Getzler, E.: A Darboux theorem for Hamiltonian operators in the formal calculus of variations. Duke Math. J. 111(3), 535–560 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Getzler, E.: The Batalin–Vilkovisky cohomology of the spinning particle. J. High Energy Phys. 2016(6), 1–17 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Getzler, E.: The spinning particle with curved target. Commun. Math. Phys. 352(1), 185–199 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Getzler, E., Pohorence, S.: Covariance of the classical Brink–Schwarz superparticle (to appear)Google Scholar
  13. 13.
    Kruskal, M.D., Miura, R.M., Gardner, C.S., Zablusky, N.J.: Korteweg–de Vries equation and generalizations. V. Uniqueness and nonexistence of polynomial conservation laws. J. Math. Phys. 11, 952–960 (1970)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Olver, P.J.: Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics, vol. 107. Springer, New York (1986)CrossRefGoogle Scholar
  15. 15.
    Sullivan, D.: Infinitesimal computations in topology. Inst. Hautes Études Sci. Publ. Math. 47, 269–331 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Tao, T.: Hilbert’s Fifth Problem and Related Topics, Graduate Studies in Mathematics, vol. 153. American Mathematical Society, Providence (2014)CrossRefGoogle Scholar
  17. 17.
    Whitney, H.: Geometric Integration Theory. Princeton University Press, Princeton (1957)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsNorthwestern UniversityEvanstonUSA

Personalised recommendations