Letters in Mathematical Physics

, Volume 109, Issue 1, pp 11–31 | Cite as

Differential characters and cohomology of the moduli of flat connections

  • Marco Castrillón LópezEmail author
  • Roberto Ferreiro Pérez


Let \(\pi {:}\, P\rightarrow M\) be a principal bundle and p an invariant polynomial of degree r on the Lie algebra of the structure group. The theory of Chern–Simons differential characters is exploited to define a homology map \(\chi ^{k} {:}\, H_{2r-k-1}(M)\times H_{k}({\mathcal {F}}/{\mathcal {G}})\rightarrow {\mathbb {R}}/{\mathbb {Z}}\), for \(k<r-1\), where \({\mathcal {F}} /{\mathcal {G}}\) is the moduli space of flat connections of \(\pi \) under the action of a subgroup \({\mathcal {G}}\) of the gauge group. The differential characters of first order are related to the Dijkgraaf–Witten action for Chern–Simons theory. The second-order characters are interpreted geometrically as the holonomy of a connection in a line bundle over \({\mathcal {F}}/{\mathcal {G}}\). The relationship with other constructions in the literature is also analyzed.


Characteristic classes Chern–Simons Differential characters Moduli of flat connections 

Mathematics Subject Classification

53C05 55R40 51H25 



M.C.L. was partially supported by MINECO (Spain) under Grant MTM2015–63612-P. R.F.P. was partially supported by “Proyecto de investigación Santander-UCM PR26/16-20305”.


  1. 1.
    Antieau, B., Williams, B.: The topological period-index problem over 6-complexes. J. Topol. 7, 617–640 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Atiyah, M.F., Bott, R.: The Yang–Mills equations over Riemann surfaces. Philos. Trans. R. Soc. Lond. A 308, 523–615 (1982)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Atiyah, M.F., Singer, I.: Dirac operators coupled to vector potentials. Proc. Natl. Acad. Sci. USA 81, 2597–2600 (1984)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bär, C., Becker, C.: Differential Characters. Lecture Notes in Mathematics, vol. 2112. Springer, Berlin (2014)Google Scholar
  5. 5.
    Berline, N., Vergne, M.: Classes caractéristiques équivariantes. Formules de localisation en cohomologie équivariante. C. R. Acad. Sci. Paris 295, 539–541 (1982)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Berline, N., Vergne, M.: Zéros d’un champ de vecteurs et classes charact éristiques équivariantes. Duke Math. J. 50, 539–549 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Berline, N., Getzler, E., Vergne, M.: Heat Kernels and Dirac Operators. Springer, Berlin (1992)CrossRefzbMATHGoogle Scholar
  8. 8.
    Biswas, I., Castrillón López, M.: Flat connections and cohomology invariants. Math. Nachr. 290(14–15), 2170–2184 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bott, R., Tu, L.: Equivariant Characteristic Classes in the Cartan Model, Geometry, Analysis and Applications (Varanasi, 2000), pp. 3–20. World Scientific Publishing, River Edge (2001)zbMATHGoogle Scholar
  10. 10.
    Castrillón López, M., Muñoz Masqué, J.: The geometry of the bundle of connections. Math. Z. 236, 797–811 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Chern, S.-S., Simons, J.: Characteristic forms and geometric invariants. Ann. Math. 99, 48–69 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Cheeger, J., Simons, J.: Differential characters and geometric invariants. In: Geometry and Topology, Proceedings of Special Year, College Park/MD 1983/84, Lecture Notes in Mathematics, vol. 1167. Springer, Berlin (1985)Google Scholar
  13. 13.
    Dijkgraaf, R., Witten, E.: Topological gauge theories and group cohomology. Commun. Math. Phys. 129, 393–429 (1990)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Donaldson, S.K., Kronheimer, P.B.: The Geometry of Four-Manifolds. Oxford University Press, Oxford (1990)zbMATHGoogle Scholar
  15. 15.
    Dupont, J.L., Kamber, F.: Gerbes, simplicial forms and invariants for families of foliated bundles. Comm. Math. Phys. 253, 253–282 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Ferreiro Pérez, R.: Equivariant characteristic forms in the bundle of connections. J. Geom. Phys. 54, 197–212 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Ferreiro Pérez, R.: Local cohomology and the variational bicomplex. Int. J. Geom. Methods Mod. Phys. 05, 587–604 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Ferreiro Pérez, R.: Local anomalies and local equivariant cohomology. Commun. Math. Phys. 286, 445–458 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Ferreiro Pérez, R.: Equivariant prequantization bundles on the space of connections and characteristic classes. Ann. Mat. Pura Appl. Preprint arXiv:1703.05832
  20. 20.
    Freed, D.S.: Classical Chern–Simons theory, Part 2. Houst. J. Math. 28, 293–310 (2002)zbMATHGoogle Scholar
  21. 21.
    Guillemin, V., Sternberg, S.: Supersymmetry and Equivariant de Rham Theory. Springer, London (1999)CrossRefzbMATHGoogle Scholar
  22. 22.
    Iyer, J.N.N.: Cohomological invariants of a variation of flat connections. Lett. Math. Phys. 106, 131–146 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Krupka, D.: The contact ideal. Differ. Geom. Appl. 5, 257–276 (1995)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Álgebra, Geometría y Topología, Facultad de Matemáticas, ICMAT (CSIC-UAM-UC3M-UCM)Universidad Complutense de MadridMadridSpain
  2. 2.Departamento de Economía Financiera y Contabilidad I, Facultad de Ciencias Económicas y EmpresarialesUniversidad Complutense de MadridMadridSpain

Personalised recommendations