Advertisement

Letters in Mathematical Physics

, Volume 108, Issue 11, pp 2491–2513 | Cite as

Noncommutative products of Euclidean spaces

  • Michel Dubois-Violette
  • Giovanni Landi
Article
  • 60 Downloads

Abstract

We present natural families of coordinate algebras on noncommutative products of Euclidean spaces \({\mathbb {R}}^{N_1} \times _{\mathcal {R}} {\mathbb {R}}^{N_2}\). These coordinate algebras are quadratic ones associated with an \(\mathcal {R}\)-matrix which is involutive and satisfies the Yang–Baxter equations. As a consequence, they enjoy a list of nice properties, being regular of finite global dimension. Notably, we have eight-dimensional noncommutative euclidean spaces \({\mathbb {R}}^{4} \times _{\mathcal {R}} {\mathbb {R}}^{4}\). Among these, particularly well behaved ones have deformation parameter \(\mathbf{u} \in {\mathbb {S}}^2\). Quotients include seven spheres \({\mathbb {S}}^{7}_\mathbf{u}\) as well as noncommutative quaternionic tori \({\mathbb {T}}^{{\mathbb {H}}}_\mathbf{u} = {\mathbb {S}}^3 \times _\mathbf{u} {\mathbb {S}}^3\). There is invariance for an action of \({{\mathrm{SU}}}(2) \times {{\mathrm{SU}}}(2)\) on the torus \({\mathbb {T}}^{{\mathbb {H}}}_\mathbf{u}\) in parallel with the action of \(\mathrm{U}(1) \times \mathrm{U}(1)\) on a ‘complex’ noncommutative torus \({\mathbb {T}}^2_\theta \) which allows one to construct quaternionic toric noncommutative manifolds. Additional classes of solutions are disjoint from the classical case.

Keywords

Noncommutative Euclidean spaces Noncommutative quaternionic tori Yang–Baxter equations 

Mathematics Subject Classification

16S37 16T25 

References

  1. 1.
    Berger, R.: Confluence and quantum Yang-Baxter equation. J. Pure Appl. Algebra 145(2000), 267–283 (2000)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Berger, R.: Dimension de Hochschild des algèbres gradués. C. R. Math. Acad. Sci. Paris 341, 597–600 (2005)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Berger, R., Ginzburg, V.: Higher symplectic reflection algebras and non-homogeneous \({N}\)-Koszul property. J. Algebra 305, 577–601 (2006)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Braverman, A., Gaitsgory, D.: Poincaré–Birkhoff–Witt theorem for quadratic algebras of Koszul type. J. Algebra 181, 315–328 (1996)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Cartan, H.: Homologie et cohomologie d’une algèbre graduée. Séminaire Henri Cartan 11(2), 1–20 (1958)Google Scholar
  6. 6.
    Connes, A., Dubois-Violette, M.: Noncommutative finite-dimensional manifolds. I. Spherical manifolds and related examples. Commun. Math. Phys. 230, 539–579 (2002)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Connes, A., Landi, G.: Noncommutative manifolds, the instanton algebra and isospectral deformations. Commun. Math. Phys. 221, 141–159 (2001)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Dubois-Violette, M.: Multilinear forms and graded algebras. J. Algebra 317, 198–225 (2007)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Dubois-Violette, M.: Poincaré duality for Koszul algebras. Algebra, Geometry and Mathematical Physics. Springer Proceedings in Mathematics and Statistics, vol. 85, pp. 3–26. Springer, Berlin (2014)Google Scholar
  10. 10.
    Dubois-Violette, M., Landi, G.: Noncommutative Euclidean spaces. arXiv:1801.03410 [math.QA]
  11. 11.
    Ginzburg, V.: Calabi–Yau Algebras. arXiv:math/0612139 [math.AG]
  12. 12.
    Gurevich, D.I.: Algebraic aspects of the quantum Yang–Baxter equation. Algebra i Analiz 2, 119–148 (1990)zbMATHGoogle Scholar
  13. 13.
    Manin, Y.I.: Quantum Groups and Non-commutative Geometry. CRM Université de Montréal, Montreal (1988)zbMATHGoogle Scholar
  14. 14.
    Polishchuk, A., Positselski, L.: Quadratic algebras. University Lecture Series, vol. 37. American Mathematical Society, Providence (2005)zbMATHGoogle Scholar
  15. 15.
    Positselski, L.: Nonhomogeneous quadratic duality and curvature. Funct. Anal. Appl. 27, 197–204 (1993)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Wambst, M.: Complexes de Koszul quantiques. Ann. Inst. Fourier Grenoble 43, 1089–1156 (1993)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire de Physique Théorique, UMR 8627Université Paris XIOrsay CedexFrance
  2. 2.MatematicaUniversità di TriesteTriesteItaly
  3. 3.INFNTriesteItaly

Personalised recommendations