Non-singular space-times with a negative cosmological constant: V. Boson stars

  • Piotr T. Chruściel
  • Erwann Delay
  • Paul Klinger
  • Andreas Kriegl
  • Peter W. Michor
  • Armin Rainer
Article
  • 24 Downloads

Abstract

We prove existence of large families of solutions of Einstein-complex scalar field equations with a negative cosmological constant, with a stationary or static metric and a time-periodic complex scalar field.

Keywords

Boson stars Negative cosmological constant Periodic solutions of Einstein equations 

Mathematics Subject Classification

83C20 83E15 

Notes

Acknowledgements

The research of PTC was supported in part by the Austrian Research Fund (FWF), Project P29517-N27, by the Polish National Center of Science (NCN) under Grant 2016/21/B/ST1/00940 and by the Erwin Schrödinger Institute. Armin Rainer was supported by the FWF-Project P 26735-N25. Paul Klinger was supported by a uni:docs grant of the University of Vienna. We are grateful to Gilles Carron and Luc Nguyen for useful comments and discussions.

References

  1. 1.
    Alekseevsky, D., Kriegl, A., Michor, P.W., Losik, M.: Choosing roots of polynomials smoothly. Isr. J. Math. 105, 203–233 (1998)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Anderson, M.T.: Einstein metrics with prescribed conformal infinity on \(4\)-manifolds. Geom. Funct. Anal. 18, 305–366 (2001). arXiv:math.DG/0105243 MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Anderson, M.T.: Boundary regularity, uniqueness and non-uniqueness for AH Einstein metrics on \(4\)-manifolds. Adv. Math. 179, 205–249 (2003). arXiv:math.DG/0104171 MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Anderson, M.T., Chruściel, P.T., Delay, E.: Non-trivial, static, geodesically complete vacuum space-times with a negative cosmological constant. J. High Energy Phys. 10, 063, 22 (2002). arXiv:gr-qc/0211006 MathSciNetGoogle Scholar
  5. 5.
    Anderson, M.T., Chruściel, P.T., Delay, E.: Non-trivial, static, geodesically complete space-times with a negative cosmological constant. II. \(n\ge 5\), AdS/CFT correspondence: Einstein metrics and their conformal boundaries, IRMA Lect. Math. Theor. Phys., vol. 8, Eur. Math. Soc., Zürich, 2005, arXiv:gr-qc/0401081, pp. 165–204
  6. 6.
    Andersson, L.: Elliptic systems on manifolds with asymptotically negative curvature. Indiana Univ. Math. J. 42, 1359–1388 (1993)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Astefanesei, D., Radu, E.: Boson stars with negative cosmological constant. Nucl. Phys. B 665, 594–622 (2003). arXiv:gr-qc/0309131 ADSMathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Besse, A.L.: Einstein manifolds, Ergebnisse d. Math. 3. Folge, vol. 10, Springer, Berlin, (1987)Google Scholar
  9. 9.
    Bizoń, P., Wasserman, A.: On existence of mini-boson stars. Commun. Math. Phys. 215, 357–373 (2000). arXiv:gr-qc/0002034 ADSMathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Breitenlohner, P., Freedman, D.Z.: Stability in gauged extended supergravity. Ann. Phys. 144(2), 249–281 (1982)ADSMathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Brihaye, Y., Hartmann, B., Riedel, J.: Self-interacting boson stars with a single Killing vector field in anti-de Sitter space-time. Phys. Rev. D 92, 044049 (2015). arXiv:1404.1874 [gr-qc]ADSCrossRefGoogle Scholar
  12. 12.
    Chodosh, O., Shlapentokh-Rothman, Y.: Time-Periodic Einstein-Klein-Gordon Bifurcations of Kerr, (2015), arXiv:1510.08025 [gr-qc]
  13. 13.
    Chruściel, P.T., Delay, E.: Non-singular, vacuum, stationary space-times with a negative cosmological constant. Ann. Henri Poincaré 8, 219–239 (2007)ADSMathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Chruściel, P.T., Delay, E.: Non-singular spacetimes with a negative cosmological constant: II. Static solutions of the Einstein-Maxwell equations, Lett. Math. Phys. (2017), in press, arXiv:1612.00281 [math.DG],  https://doi.org/10.1007/s11005-017-0955-x
  15. 15.
    Chruściel, P.T., Delay, E., Klinger, P.: Non-singular spacetimes with a negative cosmological constant: III. Stationary solutions with matter fields. Phys. Rev. D 95, 104039 (2017). arXiv:1701.03718 [gr-qc]ADSCrossRefGoogle Scholar
  16. 16.
    Dias, O.J.C., Horowitz, G.T., Santos, J.E.: Black holes with only one Killing field. J. High Energy Phys. 115, 43 (2011). arXiv:1105.4167 [hep-th]MathSciNetMATHGoogle Scholar
  17. 17.
    Herdeiro, C.A.R., Radu, E.: Kerr black holes with scalar hair. Phys. Rev. Lett. 112, 221101 (2014). arXiv:1403.2757 [gr-qc]ADSCrossRefGoogle Scholar
  18. 18.
    Higuchi, A.: Symmetric tensor spherical harmonics on the N-sphere and their application to the de Sitter group \(SO(N,1)\). J. Math. Phys. 28, 1553–1566 (1987)ADSMathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Higuchi, A.: Erratum: symmetric tensor spherical harmonics on the N-sphere and their application to the de Sitter group \(SO(N,1)\). J. Math. Phys. 43, 6385 (2002)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Ishibashi, A., Wald, R.M.: Dynamics in non-globally hyperbolic static spacetimes III: Anti-de Sitter spacetime. Class. Quantum Grav. 21, 2981 (2004)ADSMathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Kato, T.: Perturbation theory for linear operators, second ed., Springer-Verlag, Berlin-New York, 1976, Grundlehren der Mathematischen Wissenschaften, Band 132Google Scholar
  22. 22.
    Kaup, D.J.: Klein-Gordon Geon. Phys. Rev. 172, 1331–1342 (1968)ADSCrossRefGoogle Scholar
  23. 23.
    Kriegl, A., Michor, P.W., Rainer, A.: Denjoy–Carleman differentiable perturbation of polynomials and unbounded operators. Integr. Eqn. Oper. Theory 71, 407–416 (2011)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Kriegl, A., Michor, P.W.: The Convenient Setting of Global Analysis, Mathematical Surveys and Monographs, vol. 53. American Mathematical Society, Providence, RI (1997)CrossRefMATHGoogle Scholar
  25. 25.
    Kriegl, A., Michor, P.W.: Differentiable perturbation of unbounded operators. Math. Ann. 327, 191–201 (2003)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Kriegl, A., Michor, P.W., Rainer, A.: Many parameter Hölder perturbation of unbounded operators. Math. Ann. 353, 519–522 (2012)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Kristensson, G.: Second Order Differential Equations: Special Functions and Their Classification. Springer, New York (2010)CrossRefMATHGoogle Scholar
  28. 28.
    Lee, J.M.: Fredholm operators and Einstein metrics on conformally compact manifolds, Mem. Am. Math. Soc. 183 (2006), vi+83, arXiv:math.DG/0105046
  29. 29.
    Liebling, S.L., Palenzuela, C.: Dynamical Boson Stars. Living Rev. Rel. 15, 6 (2012). arXiv:1202.5809 [gr-qc]CrossRefMATHGoogle Scholar
  30. 30.
    Mezincescu, L., Townsend, P.K.: Stability at a local maximum in higher dimensional anti-deSitter space and applications to supergravity. Ann. Phys. 160(2), 406–419 (1985)ADSCrossRefGoogle Scholar
  31. 31.
    NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/, Release 1.0.14 of 2016-12-21, F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller and B. V. Saunders, eds
  32. 32.
    Parusiński, A., Rainer, A.: Optimal Sobolev regularity of roots of polynomials, accepted for publication in Ann. Sci. Éc. Norm. Supér. (4), arXiv:1506.01512
  33. 33.
    Rainer, A.: Perturbation theory for normal operators. Trans. Am. Math. Soc. 365, 5545–5577 (2013)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Piotr T. Chruściel
    • 2
  • Erwann Delay
    • 1
  • Paul Klinger
    • 2
  • Andreas Kriegl
    • 3
  • Peter W. Michor
    • 3
  • Armin Rainer
    • 3
  1. 1.Laboratoire de Mathématiques d’Avignon (EA 2151)Université d’AvignonAvignonFrance
  2. 2.Faculty of Physics and Erwin Schrödinger InstituteUniversity of ViennaWienAustria
  3. 3.Fakultät für MathematikUniversität WienWienAustria

Personalised recommendations