Letters in Mathematical Physics

, Volume 108, Issue 7, pp 1729–1756 | Cite as

On the spectra of Pisot-cyclotomic numbers

  • Kevin G. Hare
  • Zuzana Masáková
  • Tomáš Vávra


We investigate the complex spectra
$$\begin{aligned} X^\mathcal A(\beta )=\left\{ \sum _{j=0}^na_j\beta ^j : n\in \mathbb N,\ a_j\in \mathcal A\right\} \end{aligned}$$
where \(\beta \) is a quadratic or cubic Pisot-cyclotomic number and the alphabet \(\mathcal A\) is given by 0 along with a finite collection of roots of unity. Such spectra are discrete aperiodic structures with crystallographically forbidden symmetries. We discuss in general terms under which conditions they possess the Delone property required for point sets modeling quasicrystals. We study the corresponding Voronoi tilings and we relate these structures to quasilattices arising from the cut-and-project method.


Pisot-cyclotomic number Voronoi tiling Cut-and-project Quasicrystals 

Mathematics Subject Classification

52C23 11K16 11A63 



This work was supported by the Czech Science Foundation, Grant No. 13-03538S. We also acknowledge financial support of the Grant Agency of the Czech Technical University in Prague, Grant No. SGS17/193/OHK4/3T/14. The Research of K. G. Hare was supported by NSERC Grant RGPIN-2014-03154.


  1. 1.
    Balková, L., Klouda, K., Pelantová, E.: Repetitions in beta-integers. Lett. Math. Phys. 87, 181–195 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Baake, M., Klitzing, R., Schlottmann, M.: Fractally shaped acceptance domains of quasiperiodic square-triangle tilings with dedecagonal symmetry. Phys. A Stat. Mech. Appl. 191(1–4), 554–558 (1992)CrossRefGoogle Scholar
  3. 3.
    Baker, S., Masáková, Z., Pelantová, E., Vávra, T.: On periodic representations in non-Pisot bases. Monatshefte fur Mathematik. 184, 1–19 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bell, J.P., Hare, K.G.: A classification of (some) Pisot-cyclotomic numbers. J. Number Theory 115, 215–229 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Berman, S., Moody, R.V.: The algebraic theory of quasicrystals with five-fold symmetry. J. Phys. A Math. Gen. 27, 115–130 (1994)ADSCrossRefzbMATHGoogle Scholar
  6. 6.
    Borwein, P.: Computational Excursions in Analysis and Number Theory. CMS Books in Mathematics. Springer, New York (2002)CrossRefzbMATHGoogle Scholar
  7. 7.
    Burdík, C., Frougny, Ch., Gazeau, J.P., Krejcar, R.: Beta-integers as natural counting systems for quasicrystals. J. Phys. A Math. Gen. 31(30), 6449–6472 (1998)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Damanik, D.: Singular continuous spectrum for a class of substitution Hamiltonians. Lett. Math. Phys. 46, 303–311 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Erdős, P., Joó, I., Komornik, V.: Characterization of the unique expansions \(1 =\sum _{i=1}^\infty q^{-n_i}\) and related problems. Bull. Soc. Math. France 118(3), 377–390 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Fischer, S., et al.: Colloidal quasicrystals with 12-fold and 18-fold diffraction symmetry. PNAS 108(5), 1810–1814 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    Feng, D.-J., Wen, Z.-Y.: A property of Pisot numbers. J. Number Theory 97(2), 305–316 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Garsia, A.M.: Arithmetic properties of Bernoulli convolutions. Trans. Am. Math. Soc. 102, 409–432 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Guimond, L.-S., Masáková, Z., Pelantová, E.: Combinatorial properties of infinite words associated with cut-and-project sequences. J. Théor. Nombres Bordeaux 15, 697–725 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hejda, T., Pelantová, E.: Spectral properties of cubic complex Pisot units. Math. Comput. 85(297), 401–421 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Herreros, Y.: Contribution a l’arithmétique des ordinateurs, Ph.D. thesis, Institut polytechnique de Grenoble (1991)Google Scholar
  16. 16.
    Masáková, Z., Patera, J., Zich, J.: Classification of Voronoi and Delone tiles of quasicrystals III: decagonal acceptance window of any size. J. Phys. A Math. Gen. 38, 1947–1960 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Moody, R.V.: Model sets: a survey. In: From Quasicrystals to More Complex Systems, vol. 13, pp. 145–166. Centre de Physique des Houches (2000)Google Scholar
  18. 18.
    Moody, R.V., Patera, J.: Dynamical generation of quasicrystals. Lett. Math. Phys. 36, 291–300 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Moody, R.V., Patera, J.: Quasicrystals and icosians. J. Phys. A 26(12), 2829–2853 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Ngai, S.M., Wang, Y.: Hausdorff dimension of self-similar sets with overlaps. J. Lond. Math. Soc. 63, 655–672 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Niizeki, K.: Self-similar quasilattices with windows having fractal boundaries. J. Phys. A Math. Theor. 41(17), 175208 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Niizeki, K.: A dodecagonal quasiperiodic tiling with a fractal window. Philos. Mag. 87(18–21), 2855–2861 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    Rényi, A.: Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hung. 8, 477–493 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Shechtman, D., Blech, I., Gratias, D., Cahn, J.W.: Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951 (1984)ADSCrossRefGoogle Scholar
  25. 25.
    Steurer, W.: Boron-based quasicrystals with sevenfold symmetry. Philos. Mag. 87(18–21), 2707–2711 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Pure MathematicsUniversity of WaterlooWaterlooCanada
  2. 2.Department of MathematicsFNSPE, Czech Technical University in PraguePraha 2Czech Republic
  3. 3.Department of Algebra, FMPCharles UniversityPraha 8Czech Republic

Personalised recommendations