Advertisement

Maps from a surface into a compact Lie group and curvature

  • Andres Larrain-HubachEmail author
  • Doug Pickrell
Article
  • 7 Downloads

Abstract

This is a brief note on curvature properties of Sobolev Lie groups of maps from a Riemann surface into a compact Lie group K. Freed showed that, in a necessarily qualified sense, the quotient space \(W^{1/2}(S^1,K)/K\) is a (nonnegative constant) Einstein “manifold” with respect to the essentially unique \({\hbox {PSU}}(1,1)\)-invariant metric, where \(W^{s}\) denotes maps of \(L^2\) Sobolev order s. In a similarly qualified sense, and in addition making use of the Dixmier trace/Wodzicki residue, we show that for a Riemann surface \(\Sigma \), \(W^1(\Sigma ,K)/K\) is a (nonnegative constant) Einstein “manifold” with respect to the essentially unique conformally invariant metric. Because of the qualifications involved in these statements, in practice it is necessary to consider curvature for \(W^s(\Sigma ,K)\) for s above the critical exponent, and limits.

Keywords

Infinite dimensional Lie groups Pseudo differential operators Wodzicki residue 

Mathematics Subject Classification

22E65 22E70 

References

  1. 1.
    Driver, B., Lohrenz, T.: Logarithmic Sobolev inequalities for pinned loop groups. J. Funct. Anal. 140, 381–448 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Driver, B., Gordina, M.: Integrated Harnack inequalities on lie groups. J. Differ. Geom. 83, 501–550 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Freed, D.: The geometry of loop groups. J. Differ. Geom. 28, 223–276 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Gawedzki, K.: Lectures on conformal field theory. In: Deligne, E., et al. (eds.) Quantum Fields and Strings: A Course for Mathematicians, vol. 2. AMS-IAS, Park City (1998)Google Scholar
  5. 5.
    Inahama, Y.: Logarithmic Sobolev inequality on free loop groups for heat kernel measures associated with the general Sobolev spaces. J. Funct. Anal. 179, 170–213 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Larrain-Hubach, A.: The order of curvature operators on loop groups. Lett. Math. Phys. 89, 265–275 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Larrain-Hubach, A., Pickrell, D.: Sobolev Maps into Compact Lie Groups and Curvature. arXiv:1710.02012
  8. 8.
    Maeda, Y., Rosenberg, S., Torres-Ardila, F.: Geometry of loop spaces 1: \(H^s\)-Riemannian metrics. Int. J. Math. 26(4), 1540002 (2015). https://doi.org/10.1142S0129167X15400029
  9. 9.
    Maeda, Y., Rosenberg, S., Torres-Ardila, F.: Geometry of loop spaces 2: characteristic classes. Adv. Math. 287, 485–518 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Milnor, J.: Curvatures of left invariant metrics on lie groups. Adv. Math. 21, 293–329 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Paycha, S., Scott, S.: A Laurent expansion for regularized integrals of Holomorphic symbols. Geom. Funct. Anal. 17(2), 491–536 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Pickrell, D.: Heat kernel measures and critical limits. In: Neeb, K.-H., Pianzola, A. (eds.) Developments and Trends in Infinite-Dimensional Lie Theory. Birkhauser, Basel (2010)Google Scholar
  13. 13.
    Pressley, A., Segal, G.: Loop Groups. Oxford Mathematical Monographs. Oxford Science Publications, Oxford University Press, New York (1986)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.University of DaytonDaytonUSA
  2. 2.Mathematics departmentUniversity of ArizonaTucsonUSA

Personalised recommendations