Advertisement

Stability and instability properties of rotating Bose–Einstein condensates

  • Jack ArbunichEmail author
  • Irina Nenciu
  • Christof Sparber
Article
  • 19 Downloads

Abstract

We consider the mean-field dynamics of Bose–Einstein condensates in rotating harmonic traps and establish several stability and instability properties for the corresponding solution. We particularly emphasize the difference between the situation in which the trap is symmetric with respect to the rotation axis and the one where this is not the case.

Keywords

Bose–Einstein condensate Gross–Pitaevskii equation Rotation Vortices 

Mathematics Subject Classification

35Q41 35B35 35B07 

References

  1. 1.
    Aftalion, A.: Vortices in Bose-Einstein Condensates. Progress in Nonlinear Differential Equations and Their Applications, vol. 67. Springer, New York (2006)zbMATHGoogle Scholar
  2. 2.
    Antonelli, P., Marahrens, D., Sparber, C.: On the Cauchy problem for nonlinear Schrödinger equations with rotation. Discrete Contin. Dyn. Syst. 32(3), 703–715 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bambusi, D., Grébert, B., Maspero, A., Robert, D.: Reducibility of the quantum harmonic oscillator in d-dimensions with polynomial time-dependent perturbation. Anal. PDE 11(3), 775–799 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bao, W., Wang, H., Markowich, P.: Ground, symmetric and central vortex states in rotating Bose–Einstein condensates. Commun. Math. Sci. 3(1), 57–88 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bialynicki-Birula, I., Sowiński, T.: Gravity-induced resonances in a rotating trap. Phys. Rev. A 71, 043610 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    Carles, R.: Nonlinear Schrödinger equation with time dependent potential. Commun. Math. Sci. 9(4), 937–964 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Carr, L.D., Clark, C.W.: Vortices in attractive Bose–Einstein condensates in two dimensions. Phys. Rev. Lett. 97, 010403 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    Cazenave, T., Lions, P.-L.: Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys. 85(3), 549–561 (1982)ADSCrossRefzbMATHGoogle Scholar
  9. 9.
    Collin, A., Lundh, E., Suominen, K.-A.: Center-of-mass rotation and vortices in an attractive Bose gas. Phys. Rev. A 71, 023613 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    Cooper, N.R.: Rapidly rotating atomic gases. Adv. Phys. 57, 539–616 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    Dalfovo, F., Stringari, S.: Bosons in anisotropic traps: ground state and vortices. Phys. Rev. A 53, 2477–2485 (1996)ADSCrossRefGoogle Scholar
  12. 12.
    Fetter, A.: Rotating trapped Bose–Einstein condensates. Rev. Mod. Phys. 81, 647 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    Fukuizumi, R.: Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential. Discrete Contin. Dyn. Syst. 7(3), 525–544 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Fukuizumi, R., Ohta, M.: Stability of standing waves for nonlinear Schrödinger equations with potentials. Differ. Integral Equ. 16(1), 111–128 (2003)zbMATHGoogle Scholar
  15. 15.
    Fukuizumi, R., Ohta, M.: Instability of standing waves for nonlinear Schrödinger equations with potentials. Differ. Integral Equ. 16(6), 691–706 (2003)zbMATHGoogle Scholar
  16. 16.
    Garcia-Azpeitia, C., Pelinovsky, D.E.: Bifurcations of multi-vortex configurations in rotating Bose–Einstein condensates. Milan J. Math. 85(2), 331–367 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Hadj Selem, F., Hajaiej, H., Markowich, P.A., Trabelsi, S.: Variational approach to the orbital stability of standing waves of the Gross–Pitaevskii equation. Milan J. Math. 84(2), 273–295 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Hirose, M., Ohta, M.: Uniqueness of positive solutions to scalar field equation with harmonic potential. Funkc. Ekvac. 50, 67–100 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Ignat, R., Millot, V.: The critical velocity for vortex existence in a two-dimensional rotating Bose–Einstein condensate. J. Funct. Anal. 233(1), 260–306 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Le Coz, S.: Standing wave solutions in Nonlinear Schrödinger Equations. In: Analytical and Numerical Aspects of Partial Differential Equations. Walter de Gruyter, Berlin (2009)Google Scholar
  21. 21.
    Lewin, M., Nam, P.T., Rougerie, N.: Blow-up profile of rotating 2D focusing Bose gases. In: Macroscopic Limits of Quantum Systems. Springer (2018)Google Scholar
  22. 22.
    Lieb, E.H., Seiringer, R., Yngvason, J.: Bosons in a trap: a rigorous derivation of the Gross–Pitaevskii energy functional. Phys. Rev. A 61, 043602 (2000)ADSCrossRefGoogle Scholar
  23. 23.
    Méhats, F., Sparber, C.: Dimension reduction for rotating Bose–Einstein condensates with anisotropic confinement. Discrete Contin. Dyn. Syst. 36(9), 5097–5118 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Oh, Y.-G.: Cauchy problem and Ehrenfest’s law of nonlinear Schrödinger equations with potentials. J. Differ. Equ. 81(2), 255–274 (1989)ADSCrossRefzbMATHGoogle Scholar
  25. 25.
    Saito, H., Ueda, M.: Split-merge cycle, fragmented collapse, and vortex disintegration in rotating Bose–Einstein condensates with attractive interactions. Phys. Rev. A 69, 013604 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    Seiringer, R.: Gross–Pitaevskii theory of the rotating gas. Commun. Math. Phys. 229, 491–509 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Seiringer, R.: Ground state asymptotics of a dilute, rotating gas. J. Phys. A 36(37), 9755 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Weinstein, M.: Nonlinear Schrödinger equations and sharp interpolation estimates. Commun. Math. Phys. 87, 567–576 (1983)ADSCrossRefzbMATHGoogle Scholar
  29. 29.
    Zhang, J.: Stability of standing waves for nonlinear Schrödinger equations with unbounded potentials. Z. Angew. Math. Phys. 51(3), 498–503 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Zhang, J.: Stability of attractive Bose–Einstein condensates. J. Stat. Phys. 101, 731–746 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Zhang, J.: Sharp threshold for global existence and blowup in nonlinear Schrödinger equation with harmonic potential. Commun. Partial Differ. Equ. 30, 1429–1443 (2005)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Mathematics, Statistics, and Computer Science, M/C 249University of Illinois at ChicagoChicagoUSA
  2. 2.Institute of Mathematics “Simion Stoilow” of the Romanian AcademyBucharestRomania

Personalised recommendations