Advertisement

Flavored surface defects in 4d \(\mathcal{N}=1\) SCFTs

  • Shlomo S. Razamat
Article
  • 15 Downloads

Abstract

We discuss supersymmetric surface defects in compactifications of six-dimensional minimal conformal matter of types SU(3) and SO(8) to four dimensions. The relevant field theories in four dimensions are \(\mathcal{N}=1\) quiver gauge theories with SU(3) and SU(4) gauge groups, respectively. The defects are engineered by giving space-time-dependent vacuum expectation values to baryonic operators. We find evidence that in the case of SU(3) minimal conformal matter, the defects carry SU(2) flavor symmetry which is not a symmetry of the four-dimensional model. The simplest case of a model in this class is SU(3) SQCD with nine flavors, and thus the results suggest that this admits natural surface defects with SU(2) flavor symmetry. We analyze the defects using the superconformal index and derive analytic difference operators introducing the defects into the index computation. The duality properties of the four-dimensional theories imply that the index of the models is a kernel function for such difference operators. In turn, checking the kernel property constitutes an independent check of the dualities and the dictionary between six- dimensional compactifications and four-dimensional models.

Keywords

Supersymmetric theories Duality Integrable models 

Mathematics Subject Classification

81T60 81T99 

Notes

Acknowledgements

We would like to thank Simon Ruijsenaars and Gabi Zafrir for comments and relevant discussions. The research was supported by the Israel Science Foundation under Grant No. 1696/15 and by the I-CORE Program of the Planning and Budgeting Committee.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. 1.
    Seiberg, N.: Nontrivial fixed points of the renormalization group in six-dimensions. Phys. Lett. B 390, 169 (1997). arXiv:hep-th/9609161 [hep-th]
  2. 2.
    Bershadsky, M., Vafa, C.: Global anomalies and geometric engineering of critical theories in six-dimensions. arXiv:hep-th/9703167 [hep-th]
  3. 3.
    Heckman, J.J., Morrison, D.R., Rudelius, T., Vafa, C.: Atomic classification of 6D SCFTs. Fortschr. Phys. 63, 468 (2015). arXiv:1502.05405 [hep-th]CrossRefzbMATHGoogle Scholar
  4. 4.
    Razamat, S.S., Zafrir, G.: Compactification of 6d minimal SCFTs on Riemann surfaces. Phys. Rev. D 98, 066006 (2018). arXiv:1806.09196 [hep-th]ADSCrossRefGoogle Scholar
  5. 5.
    Gaiotto, D., Rastelli, L., Razamat, S.S.: Bootstrapping the superconformal index with surface defects. JHEP 1301, 022 (2013). arXiv:1207.3577 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Gaiotto, D., Razamat, S.S.: \( \cal{N}=1 \) theories of class \( {\cal{S}}_k \). JHEP 1507, 073 (2015). arXiv:1503.05159 [hep-th]ADSCrossRefGoogle Scholar
  7. 7.
    Nazzal, B., Razamat, S.S.: Surface defects in E-string compactifications and the van Diejen model. SIGMA 14, 036 (2018). arXiv:1801.00960 [hep-th]MathSciNetzbMATHGoogle Scholar
  8. 8.
    Gadde, A., Gukov, S.: 2d index and surface operators. JHEP 1403, 080 (2014). arXiv:1305.0266 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Drukker, N., Shamir, I., Vergu, C.: Defect multiplets of \( \cal{N}=1 \) supersymmetry in 4d. JHEP 1801, 034 (2018). arXiv:1711.03455 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Jefferson, P., Kim, H.-C., Vafa, C., Zafrir, G.: Towards classification of 5d SCFTs: single gauge node. arXiv:1705.05836 [hep-th]
  11. 11.
    Nekrasov, N.: Five dimensional gauge theories and relativistic integrable systems. Nucl. Phys. B 531, 323 (1998). hep-th/9609219 [hep-th]. In: 3rd International Conference on Conformal Field Theories and Integrable Models Chernogolovka, Russia, June 23–30, pp. 323–344 (1996)Google Scholar
  12. 12.
    Nekrasov, N.A., Shatashvili, S.L.: Quantization of integrable systems and four dimensional gauge theories. In: Proceedings, 16th International Congress on Mathematical Physics (ICMP09), Prague, Czech Republic, August 3–8, pp. 265–289 (2009)Google Scholar
  13. 13.
    Gaiotto, D.: N = 2 dualities. JHEP 1208, 034 (2012). arXiv:0904.2715 [hep-th]ADSCrossRefGoogle Scholar
  14. 14.
    Gaiotto, D., Moore, G.W., Neitzke, A.: Wall-crossing, Hitchin systems, and the WKB approximation. arXiv:0907.3987 [hep-th]
  15. 15.
    Ruijsenaars, S.N.M., Schneider, H.: A new class of integrable systems and its relation to solitons. Ann. Phys. 170, 370 (1986)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    van Diejen, J.F.: Integrability of difference Calogero–Moser systems. J. Math. Phys. 35, 2983 (1994)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Maruyoshi, K., Yagi, J.: Surface defects as transfer matrices, PTEP 2016, 113B01 (2016). arXiv:1606.01041 [hep-th]
  18. 18.
    Ito, Y., Yoshida, Y.: Superconformal index with surface defects for class \({\cal{S}}_k\). arXiv:1606.01653 [hep-th]
  19. 19.
    Yagi, J.: Surface defects and elliptic quantum groups. JHEP 1706, 013 (2017). arXiv:1701.05562 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Kinney, J., Maldacena, J .M., Minwalla, S., Raju, S.: An index for 4 dimensional super conformal theories. Commun. Math. Phys. 275, 209 (2007). arXiv:hep-th/0510251 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Rastelli, L., Razamat, S.S.: The supersymmetric index in four dimensions. J. Phys. A 50, 443013 (2017). arXiv:1608.02965 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Alday, L.F., Bullimore, M., Fluder, M., Hollands, L.: Surface defects, the superconformal index and q-deformed Yang–Mills. JHEP 1310, 018 (2013). arXiv:1303.4460 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Benini, F., Eager, R., Hori, K., Tachikawa, Y.: Elliptic genera of two-dimensional N = 2 gauge theories with rank-one gauge groups. Lett. Math. Phys. 104, 465 (2014). arXiv:1305.0533 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Komori, Y., Noumi, M., Shiraishi, J.: Kernel functions for difference operators of Ruijsenaars type and their applications. SIGMA 5, 054 (2009)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Spiridonov, V.P.: Aspects of elliptic hypergeometric functions. arXiv:1307.2876 [math.CA]

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Physics DepartmentTechnionHaifaIsrael

Personalised recommendations