Advertisement

Letters in Mathematical Physics

, Volume 108, Issue 7, pp 1623–1634 | Cite as

An embedding of the Bannai–Ito algebra in \(\mathscr {U}(\mathfrak {osp}(1,2))\) and \(-1\) polynomials

  • Pascal Baseilhac
  • Vincent X. Genest
  • Luc VinetEmail author
  • Alexei Zhedanov
Article

Abstract

An embedding of the Bannai–Ito algebra in the universal enveloping algebra of \(\mathfrak {osp}(1,2)\) is provided. A connection with the characterization of the little \(-1\) Jacobi polynomials is found in the holomorphic realization of \(\mathfrak {osp}(1,2)\). An integral expression for the Bannai–Ito polynomials is derived as a corollary.

Keywords

Bannai–Ito algebra Quantum groups Orthogonal polynomials Integral representations 

Mathematics Subject Classification

81Q80 81R10 33C45 

Notes

Acknowledgements

PB, VXG and AZ acknowledge the hospitality of the CRM and LV that of the Université de Tours where parts of the reported research have been realized. PB is supported by C.N.R.S. VXG holds a postdoctoral fellowship from the Natural Science and Engineering Research Council (NSERC) of Canada. LV is grateful to NSERC for support through a discovery grant.

References

  1. 1.
    Bannai, E., Ito, T.: Algebraic combinatorics I: association schemes. Benjamin & Cummings, San Francisco (1984)zbMATHGoogle Scholar
  2. 2.
    Baseilhac, P., Gainutdinov, A.M., Vu, T.T.: Cyclic tridiagonal pairs, higher order Onsager algebras and orthogonal polynomials. Linear Algebra Appl. 522, 71–110 (2017)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    De Bie, H., Genest, V.X., Vinet, L.: A Dirac–Dunkl equation on \(S^2\) and the Bannai–Ito algebra. Commun. Math. Phys. 344, 447–464 (2016)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Genest, V.X., Ismail, M., Vinet, L., Zhedanov, A.: Tridiagonalization of the hypergeometric operator and the Racah–Wilson algebra. Proc. Am. Math. Soc. 144, 4441–4454 (2016)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Genest, V.X., Vinet, L., Zhedanov, A.: Bispectrality of the complementary Bannai–Ito polynomials. SIGMA Symmetry Integr. Geom. Methods Appl. 9, 18–37 (2013)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Genest, V.X., Vinet, L., Zhedanov, A.: The Bannai–Ito polynomials as Racah coefficients of the \(sl_{-1}(2)\) algebra. Proc. Am. Math. Soc. 142, 1545–1560 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Genest, V.X., Vinet, L., Zhedanov, A.: The Bannai–Ito algebra and a superintegrable system with reflections on the two-sphere. J. Phys. A: Math. Theor. 47, 205202 (2014)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Genest, V.X., Vinet, L., Zhedanov, A.: The equitable racah algebra from three \(\mathfrak{su}(1,1)\) algebras. J. Phys. A: Math. Theor. 47, 025203 (2014)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Genest, V.X., Vinet, L., Zhedanov, A.: A Laplace–Dunkl equation on \(S^2\) and the Bannai–Ito algebra. Commun. Math. Phys. 336, 243–259 (2015)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Genest, V.X., Vinet, L., Zhedanov, A.: The equitable presentation of \(\mathfrak{osp}_{q}(1|2)\) and a \(q\)-analog of the Bannai–Ito algebra. Lett. Math. Phys. 105, 1725–1734 (2015)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Genest, V.X., Vinet, L., Zhedanov, A.: The non-symmetric Wilson polynomials are the Bannai–Ito polynomials. Proc. Am. Math. Soc. 144, 5217–5226 (2016)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Granovskii, Y.I., Zhedanov, A.: Linear covariance algebra for \(SL_q(2)\). J. Phys. A: Math. Gen. 26, L357 (1993)ADSCrossRefzbMATHGoogle Scholar
  13. 13.
    Huang, H.: Finite-dimensional irreducible modules of the universal Askey–Wilson algebra. Commun. Math. Phys. 340, 959–964 (2016)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Huang, H.: An embedding of the universal Askey-Wilson algebra into \(\fancyscript {U}_q(sl(2)) \otimes \fancyscript {U} _q(sl(2)) \otimes \fancyscript {U}_q(sl(2))\). Nucl. Phys. B 922, 401–434 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    Huang, H.: Center of the universal Askey–Wilson algebra at roots of unity. Nucl. Phys. B 909, 260–296 (2016)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Ismail, M., Koelink, E.: Spectral properties of operators using tridiagonalisation. Anal. Appl. 10, 327 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Koornwinder, T.H.: Special orthogonal polynomial systems mapped onto each other by the Fourier–Jacobi transform. In: Lecture Notes in Mathematics. Springer, Berlin, pp 174–183 (1984)Google Scholar
  18. 18.
    Terwilliger, P.: Leonard pairs and dual polynomial sequences. Preprint (1987)Google Scholar
  19. 19.
    Terwilliger, P.: Two linear transformations each tridiagonal with respect to an eigenbasis of the other. Linear Algebra Appl. 330, 149–203 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Terwilliger, P., Vidunas, R.: Leonard pairs and the Askey–Wilson relations. J. Algebra Appl. 3, 411–426 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Vidunas, R.: Normalized Leonard pairs and Askey–Wilson relations. Linear Algebra Appl. 422, 39–57 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Tsujimoto, S., Vinet, L., Zhedanov, A.: Dunkl shift operators and Bannai–Ito polynomials. Adv. Math. 229, 2123–2158 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Vinet, L., Zhedanov, A.: A ‘missing’ family of classical orthogonal polynomials. J. Phys. A: Math. Theor. 44, 085201 (2011)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Zhedanov, A.S.: “Hidden symmetry” of Askey–Wilson polynomials. Theor. Math. Phys. 89, 1146–1157 (1991)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire de Mathématiques et Physique Théorique CNRS/UMR 7350, Fédération Denis Poisson FR2964Université de ToursToursFrance
  2. 2.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Centre de Recherches MathématiquesUniversité de MontréalMontréalCanada
  4. 4.Department of Mathematics, School of InformationRenmin University of ChinaBeijingChina

Personalised recommendations