Letters in Mathematical Physics

, Volume 108, Issue 4, pp 1083–1107 | Cite as

Degeneration of Bethe subalgebras in the Yangian of \(\mathfrak {gl}_n\)

Article
  • 42 Downloads

Abstract

We study degenerations of Bethe subalgebras B(C) in the Yangian \(Y(\mathfrak {gl}_n)\), where C is a regular diagonal matrix. We show that closure of the parameter space of the family of Bethe subalgebras, which parameterizes all possible degenerations, is the Deligne–Mumford moduli space of stable rational curves \(\overline{M_{0,n+2}}\). All subalgebras corresponding to the points of \(\overline{M_{0,n+2}}\) are free and maximal commutative. We describe explicitly the “simplest” degenerations and show that every degeneration is the composition of the simplest ones. The Deligne–Mumford space \(\overline{M_{0,n+2}}\) generalizes to other root systems as some De Concini–Procesi resolution of some toric variety. We state a conjecture generalizing our results to Bethe subalgebras in the Yangian of arbitrary simple Lie algebra in terms of this De Concini–Procesi resolution.

Keywords

Yangians Bethe subalgebras Deligne-Mumford compactification Centralizer construction 

Mathematics Subject Classification

17B37 17B63 17B80 

Notes

Acknowledgements

We thank Michael Finkelberg and Alexander Molev for helpful remarks and references. We thank the referee for careful reading of the first version of the text. This work has been funded by the Russian Academic Excellence Project ’5-100’. The work was finished during A.I.’s internship at MIT supported by NRU HSE. A.I. is deeply indebted to MIT and especially to R. Bezrukavnikov and P. Etingof, for providing warm hospitality and excellent working conditions. The work of A.I. and L.R. was supported in part by the Simons Foundation. The work of L.R. has been supported by the Russian Science Foundation under grant 16-11-10160.

References

  1. 1.
    Aguirre, Leonardo, Felder, Giovanni, Veselov, Alexander P.: Gaudin subalgebras and stable rational curves. Compos. Math. 147, 1463–1478 (2011)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    De Concini, Corrado, Procesi, Claudio: Wonderful models of subspace arrangements. Sel. Math. (NS) 1(3), 459–494 (1995)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Knop, Friedrich: A Harish-Chandra homomorphism for reductive group actions. Ann. Math. (2) 140(2), 253–288 (1994)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Molev, A.I.: Yangians and Their Applications, Handbook of Algebra, vol. 3, pp. 907–959. Elseiver, Amsterdam (2003)MATHGoogle Scholar
  5. 5.
    Molev, A.I.: Yangians and Classical Lie Algebras. Mathematical Surveys and Monographs, vol. 143. AMS, Providence (2007)CrossRefMATHGoogle Scholar
  6. 6.
    Miscenko, A.S., Fomenko, A.T.: Euler equations on finite-dimensional Lie groups. Math. USSR-Izvestiya 12(2), 371 (1978)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Mukhin, E., Tarasov, V., Varchenko, A.: Bispectral and \((gl_N,gl_M)\) dualities, discrete versus differential. Adv. Math. 218(1), 216265 (2008)CrossRefGoogle Scholar
  8. 8.
    Nazarov, Maxim: Grigori Olshanski Bethe subalgebras in twisted Yangians. Commun. Math. Phys. 178, 483–506 (1996)ADSCrossRefMATHGoogle Scholar
  9. 9.
    Olshanski, G.I.: Extension of the algebra \(U({\mathfrak{g}} )\) for infinite-dimensional classical Lie algebras \({\mathfrak{g}} \), and the Yangians \(Y(gl(m))\). Sov. Math. Dokl. 36, 569–573 (1988)Google Scholar
  10. 10.
    Rybnikov, L.G.: Centralizers of certain quadratic elements in Poisson–Lie algebras and the method of translation of invariants. Rus. Math. Surv. 60(2), 367–369 (2005)CrossRefMATHGoogle Scholar
  11. 11.
    Rybnikov, L.: Cactus group and monodromy of Bethe vectors. International Mathematics Research Notices 2016;  https://doi.org/10.1093/imrn/rnw259. arXiv:1409.0131 [math.QA]
  12. 12.
    Rybnikov, L.: Argument shift method and Gaudin model. Funct. Anal. Appl. 40(3), 30–43 (2006)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Shuvalov, V.V.: On limits of Mishchenko–Fomenko subalgebras in Poisson algebras of semisimple Lie algebras. Funct. Anal. Appl. 36(4), 298–305 (2002)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Takhtajan, L.A., Faddeev, L.D.: Quantum inverse scattering method and the Heisenberg \(XYZ\)-model. Rus. Math. Surv. 34(5), 11–68 (1979)CrossRefGoogle Scholar
  15. 15.
    Tarasov, A.A.: The maximality of certain commutative subalgebras in the Poisson algebra of a semisimple Lie algebra. Rus. Math. Surv. 57(5), 1013–1014 (2002)CrossRefMATHGoogle Scholar
  16. 16.
    Tarasov, A.A.: Uniqueness of liftings of maximal commutative subalgebras of the Poisson–Lie algebra to the enveloping algebra. Sbornik Math. 194(7), 1105–1111 (2003)ADSMathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Tarasov, V.: Structure of quantum \(L\)-operators for the \(R\)-matrix of the \(XXZ\)-model. Theor. Math. Phys. 61, 1065–1071 (1984)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Vinberg, E.B.: On certain commutative subalgebras of universal enveloping algebra. Izv. Akad. Nauk SSSR Ser. Mat. 54(1), 325 (1990)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of MathematicsNational Research University Higher School of EconomicsMoscowRussian Federation
  2. 2.Institute for Information Transmission Problems of RASMoscowRussian Federation

Personalised recommendations