Letters in Mathematical Physics

, Volume 107, Issue 12, pp 2433–2451 | Cite as

A new class of Fermionic Projectors: Møller operators and mass oscillation properties

Article
  • 64 Downloads

Abstract

Recently, a new functional analytic construction of quasi-free states for a self-dual CAR algebra has been presented in Finster and Reintjes (Adv Theor Math Phys 20:1007, 2016). This method relies on the so-called strong mass oscillation property. We provide an example where this requirement is not satisfied, due to the nonvanishing trace of the solutions of the Dirac equation on the horizon of Rindler space, and we propose a modification of the construction in order to weaken this condition. Finally, a connection between the two approaches is built.

Keywords

Dirac fields Fermionic Projector Mass oscillation property Møller operator Quasi-free states Self-dual CAR algebra 

Mathematics Subject Classification

81T05 81T20 81Q10 46N50 

Notes

Acknowledgements

We would like to thank Claudio Dappiaggi, Felix Finster, Christian Gérard, Valter Moretti and Nicola Pinamonti for helpful discussions and comments on the manuscript. We are grateful to the referee for useful comments on the manuscript. S.M. is supported within the DFG research training group GRK 1692 “Curvature, Cycles, and Cohomology” and he is grateful to the department of mathematics of the University of Genoa for the kind hospitality during part of the realization of this work. N.D. is supported by a Ph.D. grant of the university of Genoa, and he is grateful to the department of mathematics of the Université de Paris-Sud for the kind hospitality during part of the realization of this work. The work for this paper was partly carried out during the program Modern Theory of Wave Equations at the Erwin Schrödinger Institute, and we are grateful to the ESI for support and the hospitality during our stay.

References

  1. 1.
    Araki, H.: On quasifree states of CAR and Bogoliubov automorphisms. Publ. Res. Inst. Math. Sci. Kyoto 6, 385 (1971)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Bär, C.: Green-hyperbolic operators on globally hyperbolic spacetimes. Commun. Math. Phys. 333, 1585 (2015)ADSCrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Bär, C., Ginoux, N., Pfäffle, F.: Wave Equations on Lorentzian Manifolds and Quantization. European Mathematical Society, Madrid (2007)CrossRefMATHGoogle Scholar
  4. 4.
    Becker, C., Benini, M., Schenkel, A., Szabo, R.J.: Abelian duality on globally hyperbolic spacetimes. Commun. Math. Phys. 349, 361 (2015)ADSCrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Benini, M., Dappiaggi, C.: Models of Free Quantum Field Theories on Curved Backgrounds. In: Brunetti, R., Dappiaggi, C., Fredenhagen, K., Yngvason, J. (eds.) Advances in Algebraic Quantum Field Theory. Mathematical Physics Studies. Springer, Cham (2015)Google Scholar
  6. 6.
    Benini, M., Dappiaggi, C., Hack, T.P.: Quantum field theory on curved backgrounds—a primer. Int. J. Mod. Phys. A 28, 1330023 (2013)ADSCrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Benini, M., Dappiaggi, C., Murro, S.: Radiative observables for linearized gravity on asymptotically flat spacetimes and their boundary induced states. J. Math. Phys. 55, 082301 (2014)ADSCrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Brunetti, R., Dappiaggi, C., Fredenhagen, K., Yngvason, J.: Advances in Algebraic Quantum Field Theory. Springer, Berlin (2015)CrossRefMATHGoogle Scholar
  9. 9.
    Brunetti, R., Fredenhagen, K.: Quantum Field Theory on Curved Backgrounds. In: Bär, C., Fredenhagen, K. (eds.) Quantum Field Theory on Curved Spacetimes. Lecture Notes in Physics, vol. 786. Springer, Berlin, Heidelberg (2009)Google Scholar
  10. 10.
    Brunetti, R., Fredenhagen, K., Köhler, M.: The microlocal spectrum condition and Wick polynomials of free fields on curved spacetimes. Commun. Math. Phys. 180, 633 (1996)ADSCrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Dappiaggi, C., Drago, N.: Constructing hadamard states via an extended møller operator. Lett. Math. Phys. 106, 1587 (2016)ADSCrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Dappiaggi, C., Hack, T.P., Pinamonti, N.: The extended algebra of observables for Dirac fields and the trace anomaly of their stress-energy tensor. Rev. Math. Phys. 21, 1241 (2009)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Dappiaggi, C., Hack, T.P., Pinamonti, N.: Approximate KMS states for scalar and spinor fields in Friedmann–Robertson–Walker spacetimes. Ann. Henri Poincare 12, 1449 (2011)ADSCrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Dappiaggi, C., Moretti, V., Pinamonti, N.: Rigorous steps towards holography in asymptotically flat spacetimes. Rev. Math. Phys. 18, 349 (2006)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Dappiaggi, C., Moretti, V., Pinamonti, N.: Distinguished quantum states in a class of cosmological spacetimes and their Hadamard property. J. Math. Phys. 50, 062304 (2009)ADSCrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Dappiaggi, C., Moretti, V., Pinamonti, N.: Rigorous construction and Hadamard property of the Unruh state in Schwarzschild spacetime. Adv. Theor. Math. Phys. 15, 355 (2011)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Dappiaggi, C., Nosari, G., Pinamonti, N.: The Casimir effect from the point of view of algebraic quantum field theory. Math. Phys. Anal. Geom. 19, 12 (2016)CrossRefGoogle Scholar
  18. 18.
    Dereziński, J., Gérard, C.: Mathematics of Quantization and Quantum Fields. Cambridge University Press, Cambridge (2013)CrossRefMATHGoogle Scholar
  19. 19.
    Dimock, J.: Algebras of local observables on a manifold. Commun. Math. Phys. 77, 219 (1980)ADSCrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Dimock, J.: Dirac quantum fields on a manifold. Trans. Am. Math. Soc. 269, 133 (1982)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Drago, N., Hack, T.-P., Pinamonti, N.: The generalised principle of perturbative agreement and the thermal mass. Ann. Henri Poincare 18, 807 (2017)ADSCrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Drago, N., Pinamonti, N.: Influence of quantum matter fluctuations on geodesic deviation. J. Phys. A 47, 375202 (2014)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Dütsch, M., Fredenhagen, K.: The master ward identity and generalized Schwinger–Dyson equation in classical field theory. Commun. Math. Phys. 243, 275 (2003)ADSCrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Fewster, C.J., Lang, B.: Pure quasifree states of the Dirac field from the projector. Class. Quant. Grav. 32, 095001 (2015)ADSCrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Fewster, C.J., Verch, R.: A quantum weak energy inequality for Dirac fields in curved spacetime. Commun. Math. Phys. 225, 331 (2002)ADSCrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Fewster, C.J., Verch, R.: The necessity of the Hadamard condition. Class. Quantum Gravity 30, 235027 (2013)ADSCrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Finster, F., Murro, S., Röken, C.: The fermionic projector in a time-dependent external potential: mass oscillation property and hadamard states. J. Math. Phys. 57, 072303 (2016)ADSCrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Finster, F., Reintjes, M.: A non-perturbative construction of the Fermionic Projector on globally hyperbolic manifolds II-space-times of infinite lifetime. Adv. Theor. Math. Phys. 20, 1007 (2016)CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Finster, F., Reintjes, M.: The Fermionic signature operator and Hadamard states in the presence of a plane electromagnetic wave. Ann. Henri Poincare 18, 1671–1701 (2017)CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    Fredenhagen, K., Rejzner, K.: Quantum field theory on curved spacetimes: axiomatic framework and examples. J. Math. Phys. 57, 031101 (2016)ADSCrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Fulling, S .A.: Aspects of Quantum Field Theory in Curved Space–time. Cambridge University Press, Cambridge (1989)CrossRefMATHGoogle Scholar
  32. 32.
    Fulling, S.A., Sweeny, M., Wald, R.M.: Singularity structure of the two-point function in quantum field theory in curved spacetime. Commun. Math. Phys. 63, 257 (1978)ADSCrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    Fulling, S.A., Narcowich, F.J., Wald, R.M.: Singularity structure of the two-point function in quantum field theory in curved spacetime, II. Ann. Phys. 136, 243 (1981)ADSCrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    Gérard, C., Wrochna, M.: Construction of Hadamard states by pseudo-differential calculus. Commun. Math. Phys. 325, 713 (2014)ADSCrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    Gérard, C., Wrochna, M.: Construction of Hadamard states by characteristic Cauchy problem. Anal. PDE 9, 111 (2016)CrossRefMATHMathSciNetGoogle Scholar
  36. 36.
    Gonnella, G., Kay, B .S.: Can locally Hadamard quantum states have non-local singularities? Class. Quantum Gravity 6, 1445 (1989)ADSCrossRefMATHGoogle Scholar
  37. 37.
    Hack, T.-P., Schenkel, A.: Linear Bosonic and Fermionic quantum gauge theories on curved spacetimes. Gen. Relat. Gravity 45, 877 (2013)ADSCrossRefMATHMathSciNetGoogle Scholar
  38. 38.
    Haag, R.: Local Quantum Physics: Fields, Particles, Algebras. Springer, Berlin (2012)MATHGoogle Scholar
  39. 39.
    Haag, R., Kastler, D.: An algebraic approach to quantum field theory. J. Math. Phys. 5, 848 (1964)ADSCrossRefMATHGoogle Scholar
  40. 40.
    Hollands, S., Wald, R .M.: Existence of local covariant time ordered products of quantum fields in curved spacetime. Commun. Math. Phys. 231, 309 (2002)ADSCrossRefMATHMathSciNetGoogle Scholar
  41. 41.
    Isham, C.J.: Spinor fields in four dimensional space–time. Proc. R. Soc. Lond. A 364, 591 (1978)ADSCrossRefMATHMathSciNetGoogle Scholar
  42. 42.
    Khavkine, I., Moretti, V.: Algebraic QFT in curved spacetime and quasifree Hadamard states: an introduction. In: Brunetti, R., Dappiaggi, C., Fredenhagen, K., Yngvason, J. (eds.) Advances in Algebraic Quantum Field Theory. Mathematical Physics Studies. Springer, Cham (2015)Google Scholar
  43. 43.
    Lawson, H.B., Michelsohn, M.-L.: Spin Geometry, vol. 1. Princeton University Press, Princeton (1989)MATHGoogle Scholar
  44. 44.
    Lax, P .D.: Functional Analysis. Wiley, New York (2002)MATHGoogle Scholar
  45. 45.
    Murro, S.: Quantum States on the Algebra of Dirac Fields: A Functional Analytic Approach. https://epub.uni-regensburg.de/35661/1/TESI.pdf
  46. 46.
    Nicolas, J.-P.: Dirac fields on asymptotically flat space–times. Diss. Math. 408, 85 (2002)MATHMathSciNetGoogle Scholar
  47. 47.
    Peierls, R.E.: The commutation laws of relativistic field theories. Proc. R. Soc. Lond. A 214, 143 (1952)ADSCrossRefMATHGoogle Scholar
  48. 48.
    Radzikowski, M.J.: Micro-local approach to the Hadamard condition in quantum field theory on curved space–time. Commun. Math. Phys. 179, 529 (1996)ADSCrossRefMATHMathSciNetGoogle Scholar
  49. 49.
    Radzikowski, M.J.: A local to global singularity theorem for quantum field theory on curved space–time. Commun. Math. Phys. 180, 1 (1996)ADSCrossRefMATHMathSciNetGoogle Scholar
  50. 50.
    Sahlmann, H., Verch, R.: Microlocal spectrum condition and Hadamard form for vector-valued quantum fields in curved spacetime. Rev. Math. Phys. 13, 1203 (2001)CrossRefMATHMathSciNetGoogle Scholar
  51. 51.
    Sanders, K.: The locally covariant Dirac field. Rev. Math. Phys. 22, 381 (2010)CrossRefMATHMathSciNetGoogle Scholar
  52. 52.
    Sanders, K.: A note on spacelike and timelike compactness. Class. Quantum Gravity 30, 115014 (2013)ADSCrossRefMATHMathSciNetGoogle Scholar
  53. 53.
    Sanders, K., Dappiaggi, C., Hack, T.P.: Electromagnetism, local covariance, the Aharonov–Bohm effect and Gauss’ law. Commun. Math. Phys. 328, 625 (2014)ADSCrossRefMATHMathSciNetGoogle Scholar
  54. 54.
    Taylor, M.E.: Partial Differential Equations I. Springer, New York (2011)CrossRefMATHGoogle Scholar
  55. 55.
    Wald, R .M.: General Relativity. University of Chicago press, Chicago (2010)MATHGoogle Scholar
  56. 56.
    Waldmann, W.: Geometric wave equations. https://arxiv.org/abs/1208.4706 (2012)
  57. 57.
    Wrochna, M.: Quantum field theory in static external potentials and Hadamard states. Ann. Henri Poincare 13, 1841 (2012)ADSCrossRefMATHMathSciNetGoogle Scholar
  58. 58.
    Wrochna, M., Zahn, J.: Classical phase space and Hadamard states in the BRST formalism for gauge field theories on curved spacetime. Rev. Math. Phys. 29, 1750014 (2017)CrossRefMATHMathSciNetGoogle Scholar
  59. 59.
    Zahn, J.: The renormalized locally covariant Dirac field. Rev. Math. Phys. 26, 1330012 (2014)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Dipartimento di MatematicaUniversità di GenovaGenoaItaly
  2. 2.Fakultät für MathematikUniversität RegensburgRegensburgGermany

Personalised recommendations