Letters in Mathematical Physics

, Volume 107, Issue 12, pp 2239–2265 | Cite as

On variational expressions for quantum relative entropies

Article

Abstract

Distance measures between quantum states like the trace distance and the fidelity can naturally be defined by optimizing a classical distance measure over all measurement statistics that can be obtained from the respective quantum states. In contrast, Petz showed that the measured relative entropy, defined as a maximization of the Kullback–Leibler divergence over projective measurement statistics, is strictly smaller than Umegaki’s quantum relative entropy whenever the states do not commute. We extend this result in two ways. First, we show that Petz’ conclusion remains true if we allow general positive operator-valued measures. Second, we extend the result to Rényi relative entropies and show that for non-commuting states the sandwiched Rényi relative entropy is strictly larger than the measured Rényi relative entropy for \(\alpha \in (\frac{1}{2}, \infty )\) and strictly smaller for \(\alpha \in [0,\frac{1}{2})\). The latter statement provides counterexamples for the data processing inequality of the sandwiched Rényi relative entropy for \(\alpha < \frac{1}{2}\). Our main tool is a new variational expression for the measured Rényi relative entropy, which we further exploit to show that certain lower bounds on quantum conditional mutual information are superadditive.

Keywords

Quantum entropy Measured relative entropy Relative entropy of recovery Additivity in quantum information theory Operator Jensen inequality Convex optimization 

Mathematics Subject Classification

94A17 81Q99 15A45 

Notes

Acknowledgements

We acknowledge discussions with Fernando Brandão, Douglas Farenick and Hamza Fawzi. MB acknowledges funding by the SNSF through a fellowship, funding by the Institute for Quantum Information and Matter (IQIM), an NSF Physics Frontiers Center (NFS Grant PHY-1125565) with support of the Gordon and Betty Moore Foundation (GBMF-12500028), and funding support form the ARO grant for Research on Quantum Algorithms at the IQIM (W911NF-12-1-0521). Most of this work was done while OF was also with the Department of Computing and Mathematical Sciences, California Institute of Technology. MT would like to thank the IQIM at CalTech and John Preskill for his hospitality during the time most of the technical aspects of this project were completed. He is funded by an ARC Discovery Early Career Researcher Award fellowship (Grant No. DE160100821).

References

  1. 1.
    Alberti, P.M.: A note on the transition probability over C*-algebras. Lett. Math. Phys. 7, 25–32 (1983)ADSCrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Araki, H.: On an inequality of lieb and thirring. Lett. Math. Phys. 19(2), 167–170 (1990)ADSCrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Beigi, S.: Sandwiched Rényi divergence satisfies data processing inequality. J. Math. Phys. 54(12), 122202 (2013)ADSCrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Belavkin, V.P., Staszewski, P.: C*-algebraic generalization of relative entropy and entropy. Ann. Henri Poincaré 37(1), 51–58 (1982)MATHMathSciNetGoogle Scholar
  5. 5.
    Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization. Society for Industrial and Applied Mathematics, Philadelphia (2001)CrossRefMATHGoogle Scholar
  6. 6.
    Berta, M., Tomamichel, M.: The fidelity of recovery is multiplicative. IEEE Trans. Inf. Theory 62(4), 1758–1763 (2016)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)CrossRefMATHGoogle Scholar
  8. 8.
    Brandão, F.G.S.L., Harrow, A.W., Oppenheim, J., Strelchuk, S.: Quantum conditional mutual information, reconstructed states, and state redistribution. Phys. Rev. Lett. 115(5), 050501 (2015)ADSCrossRefMathSciNetGoogle Scholar
  9. 9.
    Chandrasekaran, V., Shah, P.: Relative entropy optimization and its applications. Math. Program. 161(1), 1–32 (2017)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    DiVincenzo, D., Horodecki, M., Leung, D., Smolin, J., Terhal, B.: Locking classical correlations in quantum states. Phys. Rev. Lett. 92(6), 067902 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    Donald, M.J.: On the relative entropy. Commun. Math. Phys. 105(1), 13–34 (1986)ADSCrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Farenick, D.R.: Private Communication (2015)Google Scholar
  13. 13.
    Farenick, D.R., Zhou, F.: Jensen’s inequality relative to matrix-valued measures. J. Math. Anal. Appl. 327(2), 919–929 (2007)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Fawzi, H., Fawzi, O.: Relative entropy optimization in quantum information theory via semidefinite programming approximations (2017). arXiv:1705.06671 (submitted)
  15. 15.
    Fawzi, O., Renner, R.: Quantum conditional mutual information and approximate Markov chains. Commun. Math. Phys. 340(2), 575–611 (2015)ADSCrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Frank, R.L., Lieb, E.H.: Monotonicity of a relative Rényi entropy. J. Math. Phys. 54(12), 122201 (2013)ADSCrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Fuchs, C.A.: Distinguishability and accessible information in quantum theory. Ph.D. Thesis, University of New Mexico (1996). arXiv:quant-ph/9601020v1
  18. 18.
    Golden, S.: Lower bounds for the Helmholtz function. Phys. Rev. 137(4B), B1127–B1128 (1965)ADSCrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Hiai, F.: Equality cases in matrix norm inequalities of Golden-Thompson type. Linear Multilinear Algebra 36(4), 239–249 (1994)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Hiai, F., Petz, D.: The proper formula for relative entropy and its asymptotics in quantum probability. Commun. Math. Phys. 143(1), 99–114 (1991)ADSCrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Cooney, T., Hirche, C., Morgan, C., Olson, J.P., Seshadreesan, K.P., Watrous, J., Wilde, M.M.: Operational meaning of quantum measures of recovery. Phys. Rev. A. 94(2), 022310 (2016)ADSCrossRefMathSciNetGoogle Scholar
  22. 22.
    Ibinson, B., Linden, N., Winter, A.: Robustness of quantum Markov chains. Commun. Math. Phys. 277(2), 289–304 (2007)ADSCrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Junge, M., Renner, R., Sutter, D., Wilde, M.M., Winter, A.: Universal recovery from a decrease of quantum relative entropy (2015). arXiv:1509.07127 (Preprint)
  24. 24.
    König, R., Renner, R., Schaffner, C.: The operational meaning of min- and max-entropy. IEEE Trans. Inf. Theory 55(9), 4337–4347 (2009)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Kosaki, H.: Relative entropy of states: a variational expression. J. Oper. Theory 16(2), 335–348 (1986)ADSMATHMathSciNetGoogle Scholar
  26. 26.
    Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Li, K., Winter, A.: Squashed entanglement, k-extendibility, quantum markov chains, and recovery maps (2014). arXiv:1410.4184 (Preprint)
  28. 28.
    Lieb, E.H., Thirring, W.E.: Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities. In: Thirring, W. (ed) The Stability of Matter: From Atoms to Stars, chapter III, pp. 205–239. Springer, Berlin (2005)Google Scholar
  29. 29.
    Lindblad, G.: Completely positive maps and entropy inequalities. Commun. Math. Phys. 40(2), 147–151 (1975)ADSCrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    Matsumoto, K.: A new quantum version of f-divergence (2014). arXiv:1311.4722 (Preprint)
  31. 31.
    Mosonyi, M., Ogawa, T.: Quantum hypothesis testing and the operational interpretation of the quantum Rényi relative entropies. Commun. Math. Phys. 334(3), 1617–1648 (2015)ADSCrossRefMATHGoogle Scholar
  32. 32.
    Müller-Lennert, M.: Quantum relative Rényi entropies. Master Thesis, ETH ZurichGoogle Scholar
  33. 33.
    Müller-Lennert, M., Dupuis, F., Szehr, O., Fehr, S., Tomamichel, M.: On quantum Rényi entropies: a new generalization and some properties. J. Math. Phys. 54(12), 122203 (2013)ADSCrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    Petz, D.: Quasi-entropies for finite quantum systems. Rep. Math. Phys. 23(1), 57–65 (1986)ADSCrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    Petz, D.: Sufficient subalgebras and the relative entropy of states of a von Neumann algebra. Commun. Math. Phys. 105(1), 123–131 (1986)ADSCrossRefMATHMathSciNetGoogle Scholar
  36. 36.
    Petz, D.: A variational expression for the relative entropy. Commun. Math. Phys. 114(2), 345–349 (1988)ADSCrossRefMATHMathSciNetGoogle Scholar
  37. 37.
    Petz, D.: Quantum Information Theory and Quantum Statistics. Springer, Berlin (2008)MATHGoogle Scholar
  38. 38.
    Piani, M.: Relative entropy of entanglement and restricted measurements. Phys. Rev. Lett. 103(16), 160504 (2009)ADSCrossRefMathSciNetGoogle Scholar
  39. 39.
    Rains, E.: A semidefinite program for distillable entanglement. IEEE Trans. Inf. Theory 47(7), 2921–2933 (2001)CrossRefMATHMathSciNetGoogle Scholar
  40. 40.
    Rényi, A.: On measures of information and entropy. In: Proceedings of 4th Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 547–561. Berkeley, California, USA (1961)Google Scholar
  41. 41.
    Seshadreesan, K.P., Wilde, M.M.: Fidelity of recovery, squashed entanglement, and measurement recoverability. Phys. Rev. A 92(4), 042321 (2015)ADSCrossRefGoogle Scholar
  42. 42.
    Sion, M.: On general minimax theorems. Pac. J. Math. 8, 171–176 (1958)CrossRefMATHMathSciNetGoogle Scholar
  43. 43.
    So, W.: Equality cases in matrix exponential inequalities. SIAM J. Matrix Anal. Appl. 13(4), 1154–1158 (1992)CrossRefMATHMathSciNetGoogle Scholar
  44. 44.
    Sutter, D., Fawzi, O., Renner, R.: Universal recovery map for approximate Markov chains. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 472, 2186 (2016)Google Scholar
  45. 45.
    Sutter, D., Tomamichel, M., Harrow, A.W.: Strengthened monotonicity of relative entropy via pinched Petz recovery map. IEEE Trans. Inf. Theory 62(5), 2907–2913 (2016)CrossRefMATHMathSciNetGoogle Scholar
  46. 46.
    Thompson, C.J.: Inequality with applications in statistical mechanics. J. Math. Phys. 6(11), 1812 (1965)ADSCrossRefMathSciNetGoogle Scholar
  47. 47.
    Tomamichel, M.: Quantum Information Processing with Finite Resources-Mathematical Foundations, volume 5 of SpringerBriefs in Mathematical Physics. Springer, Berlin (2016)Google Scholar
  48. 48.
    Tomamichel, M., Berta, M., Hayashi, M.: Relating different quantum generalizations of the conditional Rényi entropy. J. Math. Phys. 55(8), 082206 (2014)ADSCrossRefMATHMathSciNetGoogle Scholar
  49. 49.
    Uhlmann, A.: Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in an interpolation theory. Commun. Math. Phys. 54(1), 21–32 (1977)ADSCrossRefMATHMathSciNetGoogle Scholar
  50. 50.
    Umegaki, H.: Conditional expectation in an operator algebra. Kodai Math. Sem. Rep. 14, 59–85 (1962)CrossRefMATHGoogle Scholar
  51. 51.
    van Erven, T., Harremoes, P.: Rényi divergence and Kullback-Leibler divergence. IEEE Trans. Inf. Theory 60(7), 3797–3820 (2014)CrossRefMATHGoogle Scholar
  52. 52.
    Vedral, V.: On bound entanglement assisted distillation. Phys. Lett. A 262(2–3), 121–124 (1999)ADSCrossRefMATHMathSciNetGoogle Scholar
  53. 53.
    Vedral, V., Plenio, M.B.: Entanglement measures and purification procedures. Phys. Rev. A 57(3), 1619–1633 (1998)ADSCrossRefGoogle Scholar
  54. 54.
    Wilde, M.M.: Recoverability in quantum information theory. Proc. R. Soc. A 471(2182), 20150338 (2015)ADSCrossRefMATHMathSciNetGoogle Scholar
  55. 55.
    Wilde, M.M., Winter, A., Yang, D.: Strong converse for the classical capacity of entanglement-breaking and Hadamard channels via a sandwiched Rényi relative entropy. Commun. Math. Phys. 331(2), 593–622 (2014)ADSCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Institute for Quantum Information and MatterCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Department of ComputingImperial College LondonKensington, LondonUK
  3. 3.Laboratoire de l’Informatique du ParallélismeÉcole Normale Supérieure de LyonLyonFrance
  4. 4.Centre for Quantum Software and InformationUniversity of Technology SydneySydneyAustralia

Personalised recommendations