Advertisement

Letters in Mathematical Physics

, Volume 107, Issue 12, pp 2267–2290 | Cite as

Maps on positive definite operators preserving the quantum \(\chi _\alpha ^2\)-divergence

  • Hong-Yi Chen
  • György Pál Gehér
  • Chih-Neng Liu
  • Lajos MolnárEmail author
  • Dániel Virosztek
  • Ngai-Ching Wong
Article

Abstract

We describe the structure of all bijective maps on the cone of positive definite operators acting on a finite and at least two-dimensional complex Hilbert space which preserve the quantum \(\chi _\alpha ^2\)-divergence for some \(\alpha \in [0,1]\). We prove that any such transformation is necessarily implemented by either a unitary or an antiunitary operator. Similar results concerning maps on the cone of positive semidefinite operators as well as on the set of all density operators are also derived.

Keywords

Positive definite operators Quantum \(\chi _\alpha ^2\)-divergence Preservers 

Mathematics Subject Classification

Primary 46N50 47B49 

Notes

Acknowledgements

Gy. P. Gehér and L. Molnár were supported by the “Lendület” Program (LP2012-46/2012) of the Hungarian Academy of Sciences and by the National Research, Development and Innovation Office - NKFIH, Grant No. K115383. D. Virosztek was supported by the “Lendület” Program (LP2012-46/2012) of the Hungarian Academy of Sciences, by the National Research, Development and Innovation Office - NKFIH, Grant No. K104206, and by the “For the Young Talents of the Nation” scholarship program (NTP-EFÖ-P-15-0481) of the Hungarian State. The project was also supported by the joint venture of Taiwan and Hungary MOST-HAS, Grant No. 104-2911-1-110-508.

References

  1. 1.
    Carlen, E.: Trace inequalities and quantum entropy: an introductory course. Contemp. Math. 529, 73–140 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Gehér, G.P.: An elementary proof for the non-bijective version of Wigner’s theorem. Phys. Lett. A 378, 2054–2057 (2014)CrossRefzbMATHMathSciNetADSGoogle Scholar
  3. 3.
    Hansen, F.: Convexity of quantum \(\chi ^2\)-divergence. Proc. Natl. Acad. Sci. USA 108, 10078–10080 (2011)CrossRefzbMATHMathSciNetADSGoogle Scholar
  4. 4.
    Hiai, F., Mosonyi, M., Petz, D., Bény, C.: Quantum \(f\)-divergences and error correction. Rev. Math. Phys. 23, 691–747 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Hiai, F., Petz, D.: From quasi-entropy to various quantum information quantities. Publ. Res. Inst. Math. Sci. 48, 525–542 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Jenčová, A.: Reversibility conditions for quantum operations. Rev. Math. Phys. 24, 1250016 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Molnár, L.: Selected Preserver Problems on Algebraic Structures of Linear Operators and On Function Spaces, Lecture Notes in Mathematics, vol. 1895, 236 p, Springer, Berlin, Heidelberg (2007)Google Scholar
  8. 8.
    Molnár, L.: Maps on states preserving the relative entropy. J. Math. Phys. 49, 032114 (2008)CrossRefzbMATHMathSciNetADSGoogle Scholar
  9. 9.
    Molnár, L.: Maps on the positive definite cone of a \(C^*\)-algebra preserving certain quasi-entropies. J. Math. Anal. Appl. 447, 206–221 (2017)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Molnár, L., Nagy, G.: Isometries and relative entropy preserving maps on density operators. Linear Multilinear Algebra 60, 93–108 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Molnár, L., Nagy, G., Szokol, P.: Maps on density operators preserving quantum \(f\)-divergences. Quantum Inf. Process. 12, 2309–2323 (2013)CrossRefzbMATHMathSciNetADSGoogle Scholar
  12. 12.
    Molnár, L., Pitrik, J., Virosztek, D.: Maps on positive definite matrices preserving Bregman and Jensen divergences. Linear Algebra Appl. 495, 174–189 (2016)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Molnár, L., Szokol, P.: Maps on states preserving the relative entropy II. Linear Algebra Appl. 432, 3343–3350 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Petz, D., Ghinea, C.: Introduction to quantum Fisher information. In: Rebolledo, R., Orszag, M. (eds.) Quantum Probability and Related Topics, QP-PQ: Quantum Probability and White Noise Analysis, vol. 27, pp. 261–281. World Scientific Publishing, Hackensack (2011)Google Scholar
  15. 15.
    Temme, K., Kastoryano, M.J., Ruskai, M.B., Wolf, M.M., Verstraete, F.: The \(\chi ^2\)-divergence and mixing times of quantum Markov processes. J. Math. Phys. 51, 122201 (2010)CrossRefzbMATHMathSciNetADSGoogle Scholar
  16. 16.
    Temme, K., Verstraete, F.: Quantum chi-squared and goodness of fit testing. J. Math. Phys. 56, 012202 (2015)CrossRefzbMATHMathSciNetADSGoogle Scholar
  17. 17.
    Virosztek, D.: Maps on quantum states preserving Bregman and Jensen divergences. Lett. Math. Phys. 106, 1217–1234 (2016)CrossRefzbMATHMathSciNetADSGoogle Scholar
  18. 18.
    Virosztek, D.: Quantum f-divergence preserving maps on positive semidefinite operators acting on finite dimensional Hilbert spaces. Linear Algebra Appl. 501, 242–253 (2016)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Hong-Yi Chen
    • 1
  • György Pál Gehér
    • 2
    • 3
  • Chih-Neng Liu
    • 1
  • Lajos Molnár
    • 3
    • 4
    • 5
    Email author
  • Dániel Virosztek
    • 3
    • 5
  • Ngai-Ching Wong
    • 1
  1. 1.Department of Applied MathematicsNational Sun Yat-sen UniversityKaohsiungTaiwan
  2. 2.MTA-SZTE Analysis and Stochastics Research Group, Bolyai InstituteUniversity of SzegedSzegedHungary
  3. 3.MTA-DE “Lendület” Functional Analysis Research Group, Institute of MathematicsUniversity of DebrecenDebrecenHungary
  4. 4.Bolyai InstituteUniversity of SzegedSzegedHungary
  5. 5.Institute of MathematicsBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations