Letters in Mathematical Physics

, Volume 107, Issue 12, pp 2291–2331 | Cite as

The holographic Hadamard condition on asymptotically anti-de Sitter spacetimes

  • Michał WrochnaEmail author


In the setting of asymptotically anti-de Sitter spacetimes, we consider Klein–Gordon fields subject to Dirichlet boundary conditions, with mass satisfying the Breitenlohner–Freedman bound. We introduce a condition on the \(\mathrm{b}\)-wave front set of two-point functions of quantum fields, which locally in the bulk amounts to the usual Hadamard condition, and which moreover allows to estimate wave front sets for the holographically induced theory on the boundary. We prove the existence of two-point functions satisfying this condition and show their uniqueness modulo terms that have smooth Schwartz kernel in the bulk and have smooth restriction to the boundary. Finally, using Vasy’s propagation of singularities theorem, we prove an analogue of Duistermaat and Hörmander’s theorem on distinguished parametrices.


Quantum field theory on curved spacetimes Asymptotically anti-de Sitter spacetimes Holography Hadamard condition 

Mathematics Subject Classification

81T13 81T20 35S05 35S35 



The author is deeply grateful to András Vasy for all the discussions and helpful comments. The author would also like to thank Claudio Dappiaggi, Christian Gérard, Peter Hintz, Jacques Smulevici and Jochen Zahn for stimulating discussions and useful remarks. Financial support from the ANR-16-CE40-0012-01 grant is gratefully acknowledged. The author is also grateful to the Erwin Schrödinger Institute in Vienna for its hospitality during the program “Modern theory of wave equations”.


  1. 1.
    Avis, S.J., Isham, C.J., Storey, D.: Quantum field theory in anti-de Sitter space-time. Phys. Rev. D 18, 3565–3576 (1978)CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Bachelot, A.: The Dirac system on the Anti-de Sitter universe. Commun. Math. Phys. 283, 127–167 (2008)CrossRefzbMATHADSMathSciNetGoogle Scholar
  3. 3.
    Bachelot, A.: The Klein–Gordon equation in the Anti-de Sitter cosmology. J. Math. Pures Appl. 96(6), 527–554 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bachelot, A.: New dynamics in the Anti-de Sitter universe \({AdS}^5\). Commun. Math. Phys. 320(3), 723–759 (2013)CrossRefzbMATHADSMathSciNetGoogle Scholar
  5. 5.
    Bachelot, A.: On the Klein-Gordon equation near a De Sitter brane in an Anti-de Sitter bulk. J. Math. Pures Appl. 105(2), 165–197 (2016)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Benini, M., Dappiaggi, C.: Models of free quantum field theories on curved backgrounds. In: Brunetti, R., Dappiaggi, C., Fredenhagen, K., Yngvason, J. (eds.) Advances in Algebraic Quantum Field Theory. Springer, Berlin (2015)Google Scholar
  7. 7.
    Bär, C., Ginoux, N., Pfäffle, F.: Wave equation on Lorentzian manifolds and quantization. ESI Lectures in Mathematics and Physics, EMS (2007)Google Scholar
  8. 8.
    Bros, J., Epstein, H., Moschella, U.: Towards a general theory of quantized fields on the anti-de Sitter space-time. Commun. Math. Phys. 231, 481 (2002)CrossRefzbMATHADSMathSciNetGoogle Scholar
  9. 9.
    Brunetti, R., Fredenhagen, K.: Microlocal analysis and interacting quantum field theories: renormalization on physical backgrounds. Commun. Math. Phys. 208, 623–661 (2000)CrossRefzbMATHADSMathSciNetGoogle Scholar
  10. 10.
    Brum, M., Fredenhagen, K.: ‘Vacuum-like’ Hadamard states for quantum fields on curved spacetimes. Class. Quantum Grav. 31(2), 025024 (2014)CrossRefzbMATHADSMathSciNetGoogle Scholar
  11. 11.
    Breitenlohner, P., Freedman, D.Z.: Positive energy in anti-de Sitter backgrounds and gauged extended supergravity. Phys. Lett. B 115(3), 197–201 (1982)CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Belokogne, A., Folacci, A., Queva, J.: Stueckelberg massive electromagnetism in de Sitter and anti-de Sitter spacetimes: two-point functions and renormalized stress-energy tensors. Phys. Rev. D 94, 105028 (2016)CrossRefADSGoogle Scholar
  13. 13.
    Brum, M., Jorás, S.E.: Hadamard state in Schwarzschild–de Sitter spacetime. Class. Quantum Grav. 32(1), 015013 (2014)CrossRefzbMATHADSMathSciNetGoogle Scholar
  14. 14.
    Curry, S., Gover, R.: An introduction to conformal geometry and tractor calculus, with a view to applications in general relativity. preprint arXiv:1412.7559 (2014)
  15. 15.
    Dang, N.V.: Renormalization of quantum field theory on curved spacetimes, a causal approach. Ph.D. thesis, Paris Diderot University (2013)Google Scholar
  16. 16.
    Dappiaggi, C., Ferreira, H.R.C.: Hadamard states for a scalar field in anti-de Sitter spacetime with arbitrary boundary conditions. Phys. Rev. D 94, 125016 (2016)CrossRefADSGoogle Scholar
  17. 17.
    Dold, D.: Unstable mode solutions to the Klein–Gordon equation in Kerr–anti-de Sitter spacetimes. Commun. Math. Phys. 350(2), 639–697 (2017)CrossRefzbMATHADSMathSciNetGoogle Scholar
  18. 18.
    Dereziński, J., Gérard, C.: Mathematics of Quantization and Quantum Fields, Cambridge Monographs in Mathematical Physics. Cambridge University Press, Cambridge (2013)CrossRefzbMATHGoogle Scholar
  19. 19.
    Duistermaat, J.J., Hörmander, L.: Fourier integral operators II. Acta Math. 128, 183–269 (1972)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Dütsch, M., Rehren, K.-H.: A comment on the dual field in the AdS-CFT correspondence. Lett. Math. Phys. 62, 171–184 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Dütsch, M., Rehren, K.-H.: Generalized free fields and the AdS-CFT correspondence. Ann. Henri Poincare 4, 613–635 (2003)CrossRefzbMATHADSMathSciNetGoogle Scholar
  22. 22.
    Dütsch, M., Rehren, K.-H.: Protecting the conformal symmetry via bulk renormalization on anti de Sitter space. Commun. Math. Phys. 307, 315 (2011)CrossRefzbMATHADSGoogle Scholar
  23. 23.
    Dereziński, J., Richard, S.: On Schrödinger operators with inverse square potentials on the half-line. Ann. Henri Poincaré 18(3), 869–928 (2017). doi: 10.1007/s00023-016-0520-7
  24. 24.
    Enciso, A., Kamran, N.: A singular initial-boundary value problem for nonlinear wave equations and holography in asymptotically anti-de Sitter spaces. J. Math. Pures Appl. 103, 1053–1091 (2015)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Finster, F., Murro, S., Röken, C.: The fermionic projector in a time-dependent external potential: mass oscillation property and Hadamard states. J. Math. Phys. 57, 072303 (2016)CrossRefzbMATHADSMathSciNetGoogle Scholar
  26. 26.
    Fulling, S.A., Narcowich, F.J., Wald, R.M.: Singularity structure of the two-point function in quantum field theory in curved space-time, II. Ann. Phys. 136, 243–272 (1981)CrossRefzbMATHADSGoogle Scholar
  27. 27.
    Fredenhagen, K., Rejzner, K.: Perturbative algebraic quantum field theory. In: Calaque, D., Strobl, T. (eds.) Mathematical Aspects of Quantum Field Theories, pp. 17–55. Springer, Berlin (2015)Google Scholar
  28. 28.
    Fredenhagen, K., Rejzner, K.: Quantum field theory on curved spacetimes: axiomatic framework and examples. J. Math. Phys. 57(3), 031101 (2016)CrossRefzbMATHADSMathSciNetGoogle Scholar
  29. 29.
    Fulling, S.A., Sweeny, M., Wald, R.M.: Singularity structure of the two-point function in quantum field theory in curved space-time. Commun. Math. Phys. 63, 257–264 (1978)CrossRefzbMATHADSGoogle Scholar
  30. 30.
    Fewster, C.J., Verch, R.: The necessity of the Hadamard condition. Class. Quantum Grav. 30, 235027 (2013)CrossRefzbMATHADSMathSciNetGoogle Scholar
  31. 31.
    Fewster, C.J., Verch, R.: Algebraic quantum field theory in curved spacetimes. In: Brunetti, R., Dappiaggi, C., Fredenhagen, K., Yngvason, J. (eds.) Advances in Algebraic Quantum Field Theory. Springer, Berlin (2015)Google Scholar
  32. 32.
    Gannot, O.: Elliptic boundary value problems for Bessel operators, with applications to anti-de Sitter spacetimes. preprint arxiv:1507.02794 (2015)
  33. 33.
    Gannot, O.: Existence of quasinormal modes for Kerr-AdS black holes. Ann. Henri Poincaré 18(8), 2757–2788 (2017)Google Scholar
  34. 34.
    Gell-Redman, J., Haber, N., Vasy, A.: The Feynman propagator on perturbations of Minkowski space. Commun. Math. Phys. 342(1), 333–384 (2016)CrossRefzbMATHADSMathSciNetGoogle Scholar
  35. 35.
    Graham, C.R., Lee, J.M.: Einstein metrics with prescribed conformal infinity on the ball. Adv. Math. 87(2), 186–225 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Gover, R., Latini, E., Waldron, A.: Poincaré–Einstein holography for forms via conformal geometry in the bulk. Mem. Am. Math. Soc. 235, 1106 (2015)zbMATHGoogle Scholar
  37. 37.
    Gérard, C., Oulghazi, O., Wrochna, M.: Hadamard states for the Klein–Gordon equation on Lorentzian manifolds of bounded geometry. Commun. Math. Phys. 352(2), 352–519 (2017)CrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    Gover, R., Waldron, A.: Boundary calculus for conformally compact manifolds. Indiana Univ. Math. J. 63(1), 119–163 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  39. 39.
    Gérard, C., Wrochna, M.: Construction of Hadamard states by pseudo-differential calculus. Commun. Math. Phys. 325(2), 713–755 (2014)CrossRefzbMATHADSMathSciNetGoogle Scholar
  40. 40.
    Hintz, P.: Global analysis of linear and nonlinear wave equations on cosmological spacetimes. Ph.D. thesis, Stanford University (2015)Google Scholar
  41. 41.
    Holzegel, G., Luk, J., Smulevici, J., Warnick, C.: Asymptotic properties of linear field equations in anti-de Sitter space. arXiv:1502.04965 (2015)
  42. 42.
    Hollands, S.: The Hadamard condition for Dirac fields and adiabatic states on Robertson–Walker spacetimes. Commun. Math. Phys. 216, 635–661 (2001)CrossRefzbMATHADSMathSciNetGoogle Scholar
  43. 43.
    Holzegel, G.: Well-posedness for the massive wave equation on asymptotically anti-de sitter space-times. J. Hyperbolic Differ. Equ. 09(02), 239–261 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  44. 44.
    Hörmander, L.: The Analysis of Linear Partial Differential Operators I–IV, Classics in Mathematics. Springer, Berlin (2007)CrossRefGoogle Scholar
  45. 45.
    Holzegel, G., Smulevici, J.: Quasimodes and a lower bound on the uniform energy decay rate for Kerr-AdS spacetimes. Anal. PDE 7(5), 1057–1090 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  46. 46.
    Hintz, P., Vasy, A.: The global non-linear stability of the Kerr–de Sitter family of black holes. preprint arXiv:1606.04014 (2016)
  47. 47.
    Hollands, S., Wald, R.M.: Existence of local covariant time ordered products of quantum fields in curved spacetime. Commun. Math. Phys. 231(2), 309–345 (2002)CrossRefzbMATHADSMathSciNetGoogle Scholar
  48. 48.
    Hollands, S., Wald, R.M.: Conservation of the stress tensor in perturbative interacting quantum field theory in curved spacetimes. Rev. Math. Phys. 17(3), 277–311 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  49. 49.
    Holzegel, G., Warnick, C.M.: Boundedness and growth for the massive wave equation on asymptotically anti-de Sitter black holes. J. Funct. Anal. 266(4), 2436–2485 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  50. 50.
    Hollands, S., Wald, R.M.: Quantum fields in curved spacetime. In: Ashtekar, A., Berger, B. K., Isenberg, J., MacCallum, M. (eds.) General Relativity and Gravitation: A Centennial Perspective. Cambridge University Press, Cambridge (2015)Google Scholar
  51. 51.
    Idelon–Riton, G.: Scattering theory for the Dirac equation in Schwarzschild–anti-de Sitter space-time. preprint arXiv:1412.0869 (2014)
  52. 52.
    Ishibashi, A., Wald, R.M.: Dynamics in non-globally-hyperbolic static spacetimes: 2. General analysis of prescriptions for dynamics. Class. Quantum Grav. 20(16), 3815–3826 (2004)CrossRefzbMATHADSMathSciNetGoogle Scholar
  53. 53.
    Ishibashi, A., Wald, R.M.: Dynamics in nonglobally hyperbolic static space-times: 3. Anti-de Sitter space-time. Class. Quantum Grav. 21, 2981–3014 (2004)CrossRefzbMATHADSGoogle Scholar
  54. 54.
    Junker, W.: Hadamard States, adiabatic vacua and the construction of physical states for scalar quantum fields on curved spacetime. Rev. Math. Phys. 8, 1091–1159 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  55. 55.
    Kay, B.S.: The principle of locality and quantum field theory on (non globally hyperbolic) curved spacetimes. Rev. Math. Phys. (Special Issue), 167–195 (1992)Google Scholar
  56. 56.
    Kay, B.S., Larkin, P.: Pre-holography. Phys. Rev. D 77, 121501R (2008)CrossRefADSGoogle Scholar
  57. 57.
    Khavkine, I., Moretti, V.: Algebraic QFT in curved spacetime and quasifree Hadamard states: an introduction. In: Brunetti, R., Dappiaggi, C., Fredenhagen, K., Yngvason, J. (eds.) Advances in Algebraic Quantum Field Theory. Springer, Berlin (2015)Google Scholar
  58. 58.
    Kay, B.S., Ortíz, L.: Brick walls and AdS/CFT. Gen. Relativ. Gravit. 46, 1727 (2014)CrossRefzbMATHADSMathSciNetGoogle Scholar
  59. 59.
    Kovařík, H., Truc, F.: Schrödinger operators on a half-line with inverse square potentials. Math. Model. Nat. Phenom. 9, 170–176 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  60. 60.
    Kay, B.S., Wald, R.M.: Theorems on the uniqueness and thermal properties of stationary, nonsingular, quasifree states on spacetimes with a bifurcate Killing horizon. Phys. Rep. 207, 49 (1991)CrossRefzbMATHADSMathSciNetGoogle Scholar
  61. 61.
    Kent, C., Winstanley, E.: Hadamard renormalized scalar field theory on anti-de Sitter spacetime. Phys. Rev. D 91(4), 044044 (2015)CrossRefADSMathSciNetGoogle Scholar
  62. 62.
    Lebeau, G.: Propagation des ondes dans les variétés à coin. Ann. Scient. Éc. Norm. Sup. 30, 429–497 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  63. 63.
    Maldacena, J.: The large-N limit of superconformal field theories and supergravity. Int. J. Theor. Phys. 38(4), 1113–1133 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  64. 64.
    Melrose, R.: Transformation of boundary problems. Acta Math. 147(3–4), 149–236 (1993)zbMATHMathSciNetGoogle Scholar
  65. 65.
    Melrose, R.: The Atiyah–Patodi–Singer index theorem, vol. 4. AK Peters, Wellesley (1993)zbMATHGoogle Scholar
  66. 66.
    Mazzeo, R., Melrose, R.: Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature. J. Func. Anal. 75, 260–310 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  67. 67.
    Melrose, R., Vasy, A., Wunsch, J.: Propagation of singularities for the wave equation on manifolds with edges. J. Func. Anal. 75, 260–310 (1987)CrossRefGoogle Scholar
  68. 68.
    Morrison, I.A.: Boundary-to-bulk maps for AdS causal wedges and the Reeh–Schlieder property in holography. J-HEP 5, 1–29 (2014)Google Scholar
  69. 69.
    Radzikowski, M.: Micro-local approach to the Hadamard condition in quantum field theory on curved space-time. Commun. Math. Phys. 179, 529–553 (1996)CrossRefzbMATHADSMathSciNetGoogle Scholar
  70. 70.
    Radzikowski, M.: A local to global singularity theorem for quantum field theory on curved spacetime. Commun. Math. Phys. 180, 1 (1996)CrossRefzbMATHADSMathSciNetGoogle Scholar
  71. 71.
    Rehren, K.-H.: Local quantum observables in the anti-de Sitter-conformal QFT correspondence. Phys. Lett. B 493(3), 383–388 (2000)CrossRefzbMATHADSMathSciNetGoogle Scholar
  72. 72.
    Rehren, K.-H.: Algebraic holography. Ann. Henri Poincaré 1, 607 (2000)CrossRefzbMATHADSMathSciNetGoogle Scholar
  73. 73.
    Ribeiro, P.L.: Algebraic holography in asymptotically simple, asymptotically AdS spacetimes. Prog. Math. 251, 253–270 (2007)CrossRefzbMATHGoogle Scholar
  74. 74.
    Ribeiro, P. L.: Structural and dynamical aspects of the AdS-CFT correspondence: a rigorous approach. Ph.D. Thesis, University of São Paulo (2007)Google Scholar
  75. 75.
    Sanders, K.: Equivalence of the (generalised) hadamard and microlocal spectrum condition for (generalised) free fields in curved spacetime. Commun. Math. Phys. 295(2), 485–501 (2010)CrossRefzbMATHADSMathSciNetGoogle Scholar
  76. 76.
    Sanders, K.: On the construction of Hartle–Hawking–Israel states across a static bifurcate killing horizon. Lett. Math. Phys. 105(4), 575–640 (2015)CrossRefzbMATHADSMathSciNetGoogle Scholar
  77. 77.
    Sánchez, M.: On the geometry of static spacetimes. Nonlinear Anal. 63, 455–463 (2005)CrossRefGoogle Scholar
  78. 78.
    Sahlmann, H., Verch, R.: Microlocal spectrum condition and Hadamard form for vector-valued quantum fields in curved spacetime. Rev. Math. Phys. 13(10), 1203–1246 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  79. 79.
    Vasy, A.: Propagation of singularities for the wave equation on manifolds with corners. Ann. Math. (2) 168(3), 749–812 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  80. 80.
    Vasy, A.: Diffraction by edges. Modern Phys. Lett. B 22, 2287–2328 (2008)CrossRefzbMATHADSMathSciNetGoogle Scholar
  81. 81.
    Vasy, A.: The wave equation on asymptotically de Sitter-like spaces. Adv. Math. 223(1), 49–97 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  82. 82.
    Vasy, A.: The wave equation on asymptotically anti-de Sitter spaces. Anal. PDE 5, 81–144 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  83. 83.
    Vasy, A.: On the positivity of propagator differences. Ann. Henri Poincaré 18(3), 983–1007 (2017)Google Scholar
  84. 84.
    Vasy, A., Wrochna, M.: Quantum fields from global propagators on asymptotically Minkowski and extended de Sitter spacetimes. preprint arXiv:1512.08052 (2015)
  85. 85.
    Wald, R.M.: Dynamics in nonglobally hyperbolic, static space times. J. Math. Phys. 21, 2802–2805 (1980)CrossRefADSMathSciNetGoogle Scholar
  86. 86.
    Warnick, C.M.: The massive wave equation in asymptotically AdS spacetimes. Commun. Math. Phys. 321(1), 85–111 (2013)CrossRefzbMATHADSMathSciNetGoogle Scholar
  87. 87.
    Warnick, C.M.: On quasinormal modes of asymptotically anti-de Sitter black holes. Commun. Math. Phys. 333(2), 959–1035 (2015)CrossRefzbMATHADSMathSciNetGoogle Scholar
  88. 88.
    Zahn, J.: Generalized Wentzell boundary conditions and holography. preprint arXiv:1512.05512 (2015)
  89. 89.
    Yagdjian, K., Galstian, A.: The Klein–Gordon equation in anti-de Sitter spacetime. Rend. Sem. Mat. Univ. Pol. Torino 67, 291–292 (2009)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Institut Fourier, UMR 5582 CNRSUniversité Grenoble AlpesGrenoble Cedex 09France

Personalised recommendations