Advertisement

Letters in Mathematical Physics

, Volume 107, Issue 3, pp 475–503 | Cite as

Lie algebra type noncommutative phase spaces are Hopf algebroids

  • Stjepan Meljanac
  • Zoran Škoda
  • Martina Stojić
Article

Abstract

For a noncommutative configuration space whose coordinate algebra is the universal enveloping algebra of a finite-dimensional Lie algebra, it is known how to introduce an extension playing the role of the corresponding noncommutative phase space, namely by adding the commuting deformed derivatives in a consistent and nontrivial way; therefore, obtaining certain deformed Heisenberg algebra. This algebra has been studied in physical contexts, mainly in the case of the kappa-Minkowski space-time. Here, we equip the entire phase space algebra with a coproduct, so that it becomes an instance of a completed variant of a Hopf algebroid over a noncommutative base, where the base is the enveloping algebra.

Keywords

Universal enveloping algebra Noncommutative phase space Deformed derivative Hopf algebroid Completed tensor product 

Mathematics Subject Classification

16S30 16S32 16S35 16Txx 

Notes

Acknowledgements

We thank L. El Kaoutit, V. Roubtsov, T. Brzeziński, T. Maszczyk and G. Böhm for reading fragments of this work and advice. We thank A. Borowiec, J. Lukierski and A. Pachoł for discussions. S.M. has been supported by Croatian Science Foundation, project IP-2014-09-9582. A part of the work has been done at IRB, Zagreb, and a substantial progress has also been made during the visit of Z.Š. to IHÉS in November 2012. Z.Š. thanks G. Garkusha for the invitation to present a related Algebra and topology seminar at Swansea, July 15, 2014.

References

  1. 1.
    Amelino-Camelia, G., Arzano, M.: Coproduct and star product in field theories on Lie-algebra non-commutative space-times. Phys. Rev. D 65, 084044 (2002). arXiv:hep-th/0105120 ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Böhm G.: Hopf algebroids In: Hazewinkel, M. (ed.) Handbook of Algebra, Vol. 6, pp. 173–236. Elsevier (2009). arXiv:0805.3806
  3. 3.
    Böhm G.: Internal bialgebroids, entwining structures and corings. AMS Contemp. Math. 376, 207–226 (2005). arXiv:math.QA/0311244
  4. 4.
    Böhm G, Szlachányi K.: Hopf algebroids with bijective antipodes: axioms, integrals and duals. Commun. Algebra 32(11), 4433–4464 (2004). arXiv:math.QA/0305136
  5. 5.
    Borel, É.: Sur quelques points de la théorie des fonctions. Annales Scientifiques de l’École Normale Supérieure, Sér. 3(12), 9–55 (1895)Google Scholar
  6. 6.
    Bourbaki, N.: Lie group and algebras, Ch. I–III, Hermann, Paris (1971) (Ch. I), 1972 (Ch. II–III) (in French); Springer 1975, 1989 (Ch. I–III, in English)Google Scholar
  7. 7.
    Brzeziński, T., Militaru, G.: Bialgebroids, \(\times _A\)-bialgebras and duality. J. Algebra 251, 279–294 (2002). arXiv:math.QA/0012164
  8. 8.
    Brzeziński, T., Wisbauer, R.: Corings and comodules. London Math. Soc. Lect. Note Ser. 309. Cambridge Univ. Press, Cambridge (2003)Google Scholar
  9. 9.
    Cartier, P.: A primer of Hopf algebras. In: Cartier, P. et al (ed.) Frontiers in Number Theory, Physics, and Geometry II, pp. 537–615. Springer (2007)Google Scholar
  10. 10.
    Durov, N., Meljanac, S., Samsarov, A., Škoda, Z.: A universal formula for representing Lie algebra generators as formal power series with coefficients in the Weyl algebra. J. Algebra 309(1), 318–359 (2007). arXiv:math.RT/0604096
  11. 11.
    Govindarajan, T.R., Gupta, K.S., Harikumar, E., Meljanac, S., Meljanac, D.: Twisted statistics in \(\kappa \)-Minkowski spacetime. Phys. Rev. D 77(10), 105010, 6 (2008)Google Scholar
  12. 12.
    Halliday, S., Szabo, R.J.: Noncommutative field theory on homogeneous gravitational waves. J. Phys. A 39, 5189–5226 (2006). arXiv:hep-th/0602036
  13. 13.
    Helgason, S.: Differential geometry, Lie groups and symmetric spaces. Am. Math. Soc. (2001). Acad. Press (1978)Google Scholar
  14. 14.
    Kontsevich, M.: Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66(3), 157–216 (2003). arXiv:q-alg/9709040
  15. 15.
    Jurić, T., Kovačević, D., Meljanac, S.: \(\kappa \)-deformed phase space. Hopf algebroid and twisting, SIGMA 10(106), 1–18 (2014). arXiv:1402.0397 MATHGoogle Scholar
  16. 16.
    Jurić, T., Meljanac S., Štrajn R.: \(\kappa \)-Poincaré-Hopf algebra and Hopf algebroid structure of phase space from twist. Phys. Lett. A 377, 2472–2476 (2013). arXiv:1303.0994
  17. 17.
    Jurić, T., Meljanac S., Štrajn R.: Twists, realizations and Hopf algebroid structure of kappa-deformed phase space. Int. J. Mod. Phys. A 29, 1450022 (2014). arXiv:1305.3088
  18. 18.
    Lu, J-H.: Hopf algebroids and quantum groupoids. Int. J. Math. 7, 47–70 (1996). arXiv:q-alg/9505024
  19. 19.
    Lukierski, J., Nowicki, A., Ruegg, H., Tolstoy, V.N.: \(q\)-deformation of Poincaré algebra. Phys. Lett. B 264, 331 (1991)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Lukierski, J., Nowicki, A.: Heisenberg double description of \(\kappa \)-Poincaré algebra and \(\kappa \)-deformed phase space. In: Dobrev, V.K., Doebner, H.D., Sofia (eds.) Proc. XXI Int. Coll. Group Theor. Methods in Physics, pp. 186–192 (1997). arXiv:q-alg/9702003
  21. 21.
    Meljanac, S., Samsarov, A., Stojić Marko, Gupta, K.S.: Kappa-Minkowski space-time and the star product realizations. Eur. Phys. J. C53, 295–309 (2008). arXiv:0705.2471 ADSCrossRefMATHGoogle Scholar
  22. 22.
    Meljanac, S., Škoda, Z.: Hopf algebroid twists for deformation quantization of linear Poisson structures. arXiv:1605.01376
  23. 23.
    Meljanac, S., Škoda, Z.: Leibniz rules for enveloping algebras and a diagrammatic expansion. arXiv:0711.0149. www.irb.hr/korisnici/zskoda/scopr8.pdf
  24. 24.
    Postnikov, M.M.: Lie groups and Lie algebras (Lectures in geometry: Semester 5). Mir Publishers, Moscow (1988)Google Scholar
  25. 25.
    Stojić, M.: Completed Hopf algebroids (in Croatian: Upotpunjeni Hopfovi algebroidi), Ph.D. thesis, University of Zagreb (in preparation) Google Scholar
  26. 26.
    Škoda, Z., Stojić, M.: Formal charts, Lie algebra realizations and dualities for Hopf algebroids (in preparation) Google Scholar
  27. 27.
    Škoda, Z.: Heisenberg double versus deformed derivatives. Int. J. Mod. Phys. A 26(27, 28), 4845–4854 (2011). arXiv:0806.0978
  28. 28.
    Takeuchi, M.: Groups of algebras over \(A\otimes \bar{A}\). J. Math. Soc. Japan 29(3), 459–492 (1977)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Xu, P.: Quantum groupoids. Commun. Math. Phys. 216, 539–581 (2001). arXiv:q-alg/9905192

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Stjepan Meljanac
    • 1
  • Zoran Škoda
    • 2
  • Martina Stojić
    • 3
  1. 1.Theoretical Physics DivisionInstitute Rudjer BoškovićZagrebCroatia
  2. 2.Faculty of ScienceUniversity of Hradec KrálovéHradec KraloveCzech Republic
  3. 3.Department of MathematicsUniversity of ZagrebZagrebCroatia

Personalised recommendations