Letters in Mathematical Physics

, Volume 106, Issue 11, pp 1587–1615 | Cite as

Constructing Hadamard States via an Extended Møller Operator

  • Claudio DappiaggiEmail author
  • Nicolo’ Drago


We consider real scalar field theories, whose dynamics is ruled by normally hyperbolic operators differing only by a smooth potential V. By means of an extension of the standard definition of Møller operator, we construct an isomorphism between the associated spaces of smooth solutions and between the associated algebras of observables. On the one hand, such isomorphism is non-canonical, since it depends on the choice of a smooth time-dependant cut-off function \({\chi}\). On the other hand, given any quasi-free Hadamard state for a theory with a given V, such isomorphism allows for the construction of another quasi-free Hadamard state for a different potential. The resulting state preserves also the invariance under the action of any isometry, whose associated Killing field \({\xi}\) is complete and fulfilling both \({\mathcal{L}_\xi V=0 \,\, {\rm and} \,\, \mathcal{L}_\xi\chi=0}\). Eventually, we discuss a sufficient condition to remove on static spacetimes, the dependence on the cutoff via a suitable adiabatic limit.


quantum field theory on curved backgrounds Hadamard sates Møller operator 

Mathematics Subject Classification

81T20 81T05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Avetisyan Z.G.: A unified mode decomposition method for physical fields in homogeneous cosmology. Rev. Math. Phys. 26, 1430001 (2014) arXiv:1212.2408 [math-ph]MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bär C.: Green-hyperbolic operators on globally hyperbolic spacetimes. Commun. Math. Phys. 333, 1585 (2015) arXiv:1310.0738 [math-ph]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bär, C., Ginoux, N., Pfäffle, F.: Wave Equations on Lorentzian Manifolds and Quantization, 1st edn. Eur. Math. Soc., Zürich (2007)Google Scholar
  4. 4.
    Benini. M., Dappiaggi, C.: Models of free quantum field theories on curved backgrounds. arXiv:1505.04298 [math-ph]
  5. 5.
    Benini M., Dappiaggi C., Hack T.P.: Quantum Field Theory on Curved Backgrounds—A Primer. Int. J. Mod. Phys. A 28, 1330023 (2013) arXiv:1306.0527 [gr-qc]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Benini, M., Dappiaggi, C., Murro, S.: Radiative observables for linearized gravity on asymptotically flat spacetimes and their boundary induced states. J. Math. Phys. 55, 082301 (2014). arXiv:1404.4551 [gr-qc]
  7. 7.
    Bernal, A.N., Sánchez, M.S.: Smoothness of time functions and the metric splitting of globally hyperbolic space-times. Commun. Math. Phys. 257, 43 (2005). arXiv:gr-qc/0401112
  8. 8.
    Brunetti, R., Fredenhagen, K., Rejzner, K.: Quantum gravity from the point of view of locally covariant quantum field theory. arXiv:1306.1058 [math-ph]
  9. 9.
    Chilian B., Fredenhagen K.: The time slice axiom in perturbative quantum field theory on globally hyperbolic spacetimes. Commun. Math. Phys. 287, 513 (2009) arXiv:0802.1642 [math-ph]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dappiaggi C., Hack T.P., Pinamonti N.: Approximate KMS states for scalar and spinor fields in Friedmann–Robertson–Walker spacetimes. Ann. Henri Poincaré 12, 1449 (2011) arXiv:1009.5179 [gr-qc]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Dappiaggi, C., Moretti, V., Pinamonti, N.: Rigorous steps towards holography in asymptotically flat spacetimes. Rev. Math. Phys. 18, 349 (2006). arXiv:gr-qc/0506069
  12. 12.
    Dappiaggi C., Moretti V., Pinamonti N.: Cosmological horizons and reconstruction of quantum field theories. Commun. Math. Phys. 285, 1129 (2009) arXiv:0712.1770 [gr-qc]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Dappiaggi C., Moretti V., Pinamonti N.: Distinguished quantum states in a class of cosmological spacetimes and their Hadamard property. J. Math. Phys. 50, 062304 (2009) arXiv:0812.4033 [gr-qc]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Drago, N., Hack, T.P., Pinamonti, N.: The generalised principle of perturbative agreement and the thermal mass. arXiv:1502.02705 [math-ph]
  15. 15.
    Finster, F., Murro, S., Röken, C.: The fermionic projector in a time-dependent external potential: mass oscillation property and hadamard states. arXiv:1501.05522 [math-ph]
  16. 16.
    Fredenhagen K., Lindner F.: Construction of KMS states in perturbative qft and renormalized hamiltonian dynamics. Commun. Math. Phys. 332(3), 895 (2014) arXiv:1306.6519 [math-ph]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Fredenhagen, K., Rejzner, K.: QFT on curved spacetimes: axiomatic framework and examples. arXiv:1412.5125 [math-ph]
  18. 18.
    Fulling, S.A.: Aspects of quantum field theory in curved space-time. London Math. Soc. Student Texts 17, 1 (1989)Google Scholar
  19. 19.
    Fulling, S.A., Narcowich, F.J., Wald, R.M.: Singularity structure of the two-point function in quantum field theory in curved spacetime, II. Ann. Phys. 136, 243 (1981)Google Scholar
  20. 20.
    Geroch, R.P.: The domain of dependence. J. Math. Phys. 11, 437 (1970)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Gérard, C., Wrochna, M.: Feynman propagators and Hadamard states from scattering data for the Klein–Gordon equation on asymptotically Minkowski spacetimes. arXiv:1603.07465 [math-ph]
  22. 22.
    Gérard, C., Wrochna, M.: Hadamard states for the linearized Yang–Mills equation on curved spacetime. Commun. Math. Phys. 337(1), 253 (2015). arXiv:1403.7153 [math-ph]
  23. 23.
    Gérard, C., Wrochna, M.: Construction of Hadamard states by characteristic Cauchy problem. arXiv:1409.6691 [math-ph]
  24. 24.
    Gérard C., Wrochna M.: Construction of Hadamard states by pseudo-differential calculus. Commun. Math. Phys. 325, 713 (2014) arXiv:1209.2604 [math-ph]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Khavkine, I., Moretti, V.: Algebraic QFT in curved spacetime and quasifree Hadamard states: an introduction. arXiv:1412.5945 [math-ph]
  26. 26.
    Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol. 1. Interscience Publisher, New York (1963)Google Scholar
  27. 27.
    Olbermann H.: States of low energy on Robertson–Walker spacetimes. Class. Quant. Grav. 24, 5011 (2007) arXiv:0704.2986 [gr-qc]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Radzikowski M.J.: Micro-local approach to the Hadamard condition in quantum field theory on curved space-time. Commun. Math. Phys. 179, 529 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Radzikowski M.J.: A Local to global singularity theorem for quantum field theory on curved space-time. Commun. Math. Phys.180, 1 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Sahlmann H., Verch R.: Passivity and microlocal spectrum condition. Commun. Math. Phys. 214, 705 (2000) arXiv:math-ph/0002021 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Sahlmann, H., Verch, R.: Microlocal spectrum condition and Hadamard form for vector-valued quantum fields in curved spacetime. Rev. Math. Phys. 13, 1203 (2001)Google Scholar
  32. 32.
    Sanders K.: On the construction of Hartle–Hawking–Israel states across a static bifurcate Killing horizon. Lett. Math. Phys. 105(4), 575 (2015) arXiv:1310.5537 [gr-qc]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Sanders, K.: A note on spacelike and timelike compactness. Class. Quant. Grav. 30, 115014 (2013). arXiv:1211.2469 [math-ph]
  34. 34.
    Sanders, K.: Equivalence of the (generalised) Hadamard and microlocal spectrum condition for (generalised) free fields in curved spacetime. Commun. Math. Phys. 295, 485 (2010). arXiv:0903.1021 [math-ph]
  35. 35.
    Them, K., Brum, M.: States of low energy on homogeneous and inhomogeneous, expanding spacetimes. Class. Quant. Grav. 30, 235035 (2013). arXiv:1302.3174 [gr-qc]
  36. 36.
    Vasy, A., Wrochna, M.: Quantum fields from global propagators on asymptotically Minkowski and extended de Sitter spacetimes. arXiv:1512.08052 [math-ph]
  37. 37.
    Wrochna, M., Zahn, J.: Classical phase space and Hadamard states in the BRST formalism for gauge field theories on curved spacetime. arXiv:1407.8079 [math-ph]

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Dipartimento di FisicaUniversità degli Studi di PaviaPaviaItaly
  2. 2.Istituto Nazionale di Fisica Nucleare-Sezione di PaviaPaviaItaly
  3. 3.Dipartimento di MatematicaUniversità di GenovaGenoaItaly
  4. 4.Istituto Nazionale di Fisica Nucleare-Sezione di GenovaGenoaItaly

Personalised recommendations