Theta Series, Wall-Crossing and Quantum Dilogarithm Identities
Abstract
Motivated by mathematical structures which arise in string vacua and gauge theories with \({{\mathcal{N}=2}}\) supersymmetry, we study the properties of certain generalized theta series which appear as Fourier coefficients of functions on a twisted torus. In Calabi–Yau string vacua, such theta series encode instanton corrections from k Neveu–Schwarz five-branes. The theta series are determined by vector-valued wave-functions, and in this work we obtain the transformation of these wave-functions induced by Kontsevich–Soibelman symplectomorphisms. This effectively provides a quantum version of these transformations, where the quantization parameter is inversely proportional to the five-brane charge k. Consistency with wall-crossing implies a new five-term relation for Faddeev’s quantum dilogarithm \({\Phi_b}\) at b = 1, which we prove. By allowing the torus to be non-commutative, we obtain a more general five-term relation valid for arbitrary b and k, which may be relevant for the physics of five-branes at finite chemical potential for angular momentum.
Keywords
contact geometry quantization fivebranes cluster algebrasMathematics Subject Classification
13F60 33B30 53C26 81R05 81T30 81T60Preview
Unable to display preview. Download preview PDF.
References
- 1.Alexandrov S.: Twistor Approach to string compactifications: a review. Phys. Rept. 522, 1–57 (2013) arXiv:1111.2892 ADSMathSciNetCrossRefGoogle Scholar
- 2.Alexandrov, S., Manschot, J., Persson, D., Pioline, B.: Quantum hypermultiplet moduli spaces in N = 2 string vacua: a review. In: Proceedings, String-Math 2012, Bonn, Germany, July 16–21, 2012, pp. 181–212 (2013). arXiv:1304.0766
- 3.Kontsevich, M., Soibelman, Y.: Stability structures, motivic Donaldson–Thomas invariants and cluster transformations. arXiv:0811.2435
- 4.Becker, K., Becker, M., Strominger, A.: Five-branes, membranes and nonperturbative string theory. Nucl. Phys. B456, 130–152 (1995), arXiv:hep-th/9507158
- 5.Alexandrov, S., Pioline, B., Saueressig, F., Vandoren S.: Linear perturbations of quaternionic metrics. Commun. Math. Phys. 296, 353–403 (2010). arXiv:0810.1675.
- 6.Alexandrov, S., Banerjee S.: Fivebrane instantons in Calabi–Yau compactifications. Phys. Rev. D90, 041902 (2014) arXiv:1403.1265
- 7.Alexandrov, S., Pioline, B., Saueressig, F., Vandoren, S.: D-instantons and twistors. JHEP 03, 044 (2009). arXiv:0812.4219
- 8.Alexandrov, S.: D-instantons and twistors: some exact results. J. Phys. A42, 335402 (2009). arXiv:0902.2761
- 9.Alexandrov, S., Persson, D., Pioline B.: Wall-crossing, Rogers dilogarithm, and the QK/HK correspondence. JHEP 1112, 027 (2011). arXiv:1110.0466
- 10.Alexandrov, S., Persson, D., Pioline B.: Fivebrane instantons, topological wave functions and hypermultiplet moduli spaces. JHEP 1103, 111 (2011). arXiv:1010.5792
- 11.Alexandrov, S., Banerjee S.: Dualities and fivebrane instantons. JHEP 1411, 040 (2014). arXiv:1405.0291
- 12.Maulik D., Nekrasov N., Okounkov A., Pandharipande R.: Gromov–Witten theory and Donaldson–Thomas theory. I. Compos. Math. 142(5), 1263–1285 (2006)MathSciNetzbMATHGoogle Scholar
- 13.Seiberg, N., Witten, E.: Gauge dynamics and compactification to three dimensions. arXiv:hep-th/9607163
- 14.Gaiotto, D., Moore, G.W., Neitzke A.: Four-dimensional wall-crossing via three-dimensional field theory. Commun. Math. Phys. 299, 163–224 (2010). arXiv:0807.4723
- 15.Neitzke, A.: On a hyperholomorphic line bundle over the Coulomb branch. arXiv:1110.1619
- 16.Dey, A., Neitzke, A.: Hyperkähler sigma model and field theory on Gibbons-Hawking spaces. JHEP 04, 158 (2014). arXiv:1401.0349.
- 17.Haydys A.: Hyper–Kähler and quaternionic Kähler manifolds with S 1-symmetries. J. Geom. Phys. 58(3), 293–306 (2008) Google Scholar
- 18.Hitchin, N.: On the hyperkähler/quaternion Kähler correspondence. Commun. Math. Phys. 324(1), 77–106 (2013). arXiv:1210.0424
- 19.Gaiotto, D., Moore, G.W., Neitzke A.: Framed BPS States. arXiv:1006.0146
- 20.Dimofte, T., Gukov S.: Refined, motivic, and quantum. Lett. Math. Phys. 91 (2010) 1, arXiv:0904.1420.
- 21.Dimofte, T., Gukov, S., Soibelman, Y.: Quantum Wall Crossing in N=2 Gauge Theories. arXiv:0912.1346
- 22.Fock, V.V., Goncharov, A.B.: Cluster ensembles, quantization and the dilogarithm. ArXiv Mathematics e-prints (2003). arXiv:math/0311245
- 23.Fock, V.V., Goncharov, A.B.: The quantum dilogarithm and representations of quantum cluster varieties. Invent. Math. 175, 223–286 (2008). arXiv:math/0702397
- 24.Fomin, S., Zelevinsky, A.: Cluster algebras I: Foundations. ArXiv Mathematics e-prints (2001). arXiv:math/0104151
- 25.Fomin S., Zelevinsky A.: Cluster algebras. IV: coefficients. Compos. Math. 143(1), 112–164 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
- 26.Nakanishi, T.: Periodicities in cluster algebras and dilogarithm identities. In: Representations of algebras and related topics. Proceedings of the 14th international conference on representations of algebras and workshop (ICRA XIV), Tokyo, Japan, August 6–15, 2010., pp. 407–443. European Mathematical Society (EMS), Zürich (2011)Google Scholar
- 27.Fock, V., Goncharov, A.: “unpublished.” talk by V. Fock at the CQGM workshop on Quantum Dilogarithms and Quantum TeichmÑŸller Theory, Aarhus, August 9–13 (2010)Google Scholar
- 28.Chekhov, L., Fock, V.V.: Quantum Teichmuller space. Theor. Math. Phys. 120, 1245–1259 (1999). arXiv:math/9908165. [Teor. Mat. Fiz.120,511(1999)]
- 29.Goncharov, A.: A proof of the pentagon relation for the quantum dilogarithm. arXiv:0706.4054
- 30.Faddeev, L.: Volkov’s Pentagon for the Modular Quantum Dilogarithm. Funct. Anal. Appl. 45, 291 (2011). arXiv:1201.6464.
- 31.Faddeev, L.D., Kashaev, R.M.: Quantum Dilogarithm. Mod. Phys. Lett. A9, 427–434 (1994). arXiv:hep-th/9310070
- 32.Cecotti, S., Neitzke, A., Vafa C.: R-Twisting and 4d/2d Correspondences. arXiv:1006.3435
- 33.Ip, I.C.-H., Yamazaki M.: Quantum dilogarithm identities at root of unity. Int. Math. Res. Not. 2016(3), 669–695 (2016). arXiv:1412.5777
- 34.Faddeev, L.D.: Discrete Heisenberg-Weyl group and modular group. Lett. Math. Phys. 34, 249–254 (1995). arXiv:hep-th/9504111
- 35.Andersen, J. E., Kashaev R.: Complex quantum Chern–Simons. arXiv:1409.1208
- 36.Dimofte, T.: 3d superconformal theories from three-manifolds. In: New Dualities of Supersymmetric Gauge Theories, pp. 339–373. Springer, Cham (2016). arXiv:1412.7129
- 37.Kashaev, R.M., Nakanishi, T.: Classical and quantum dilogarithm identities. SIGMA 7, 102 (2011). arXiv:1104.4630
- 38.Faddeev, L., Kashaev, R., Volkov, A.Y.: Strongly coupled quantum discrete Liouville theory. 1. Algebraic approach and duality. Commun. Math. Phys. 219:199–219 (2001). arXiv:hep-th/0006156
- 39.Alexandrov, S., Persson, D., Pioline B.: On the topology of the hypermultiplet moduli space in type II/CY string vacua. Phys.Rev. D83, 026001 (2011). arXiv:1009.3026
- 40.Milgram, M.S., Glasser, L.: On Quadratic Gauss Sums and Variations Thereof. arXiv:1405.3194