Advertisement

Letters in Mathematical Physics

, Volume 106, Issue 8, pp 1037–1066 | Cite as

Theta Series, Wall-Crossing and Quantum Dilogarithm Identities

  • Sergei Alexandrov
  • Boris PiolineEmail author
Article

Abstract

Motivated by mathematical structures which arise in string vacua and gauge theories with \({{\mathcal{N}=2}}\) supersymmetry, we study the properties of certain generalized theta series which appear as Fourier coefficients of functions on a twisted torus. In Calabi–Yau string vacua, such theta series encode instanton corrections from k Neveu–Schwarz five-branes. The theta series are determined by vector-valued wave-functions, and in this work we obtain the transformation of these wave-functions induced by Kontsevich–Soibelman symplectomorphisms. This effectively provides a quantum version of these transformations, where the quantization parameter is inversely proportional to the five-brane charge k. Consistency with wall-crossing implies a new five-term relation for Faddeev’s quantum dilogarithm \({\Phi_b}\) at b = 1, which we prove. By allowing the torus to be non-commutative, we obtain a more general five-term relation valid for arbitrary b and k, which may be relevant for the physics of five-branes at finite chemical potential for angular momentum.

Keywords

contact geometry quantization fivebranes cluster algebras 

Mathematics Subject Classification

13F60 33B30 53C26 81R05 81T30 81T60 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexandrov S.: Twistor Approach to string compactifications: a review. Phys. Rept. 522, 1–57 (2013) arXiv:1111.2892 ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Alexandrov, S., Manschot, J., Persson, D., Pioline, B.: Quantum hypermultiplet moduli spaces in N = 2 string vacua: a review. In: Proceedings, String-Math 2012, Bonn, Germany, July 16–21, 2012, pp. 181–212 (2013). arXiv:1304.0766
  3. 3.
    Kontsevich, M., Soibelman, Y.: Stability structures, motivic Donaldson–Thomas invariants and cluster transformations. arXiv:0811.2435
  4. 4.
    Becker, K., Becker, M., Strominger, A.: Five-branes, membranes and nonperturbative string theory. Nucl. Phys. B456, 130–152 (1995), arXiv:hep-th/9507158
  5. 5.
    Alexandrov, S., Pioline, B., Saueressig, F., Vandoren S.: Linear perturbations of quaternionic metrics. Commun. Math. Phys. 296, 353–403 (2010). arXiv:0810.1675.
  6. 6.
    Alexandrov, S., Banerjee S.: Fivebrane instantons in Calabi–Yau compactifications. Phys. Rev. D90, 041902 (2014) arXiv:1403.1265
  7. 7.
    Alexandrov, S., Pioline, B., Saueressig, F., Vandoren, S.: D-instantons and twistors. JHEP 03, 044 (2009). arXiv:0812.4219
  8. 8.
    Alexandrov, S.: D-instantons and twistors: some exact results. J. Phys. A42, 335402 (2009). arXiv:0902.2761
  9. 9.
    Alexandrov, S., Persson, D., Pioline B.: Wall-crossing, Rogers dilogarithm, and the QK/HK correspondence. JHEP 1112, 027 (2011). arXiv:1110.0466
  10. 10.
    Alexandrov, S., Persson, D., Pioline B.: Fivebrane instantons, topological wave functions and hypermultiplet moduli spaces. JHEP 1103, 111 (2011). arXiv:1010.5792
  11. 11.
    Alexandrov, S., Banerjee S.: Dualities and fivebrane instantons. JHEP 1411, 040 (2014). arXiv:1405.0291
  12. 12.
    Maulik D., Nekrasov N., Okounkov A., Pandharipande R.: Gromov–Witten theory and Donaldson–Thomas theory. I. Compos. Math. 142(5), 1263–1285 (2006)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Seiberg, N., Witten, E.: Gauge dynamics and compactification to three dimensions. arXiv:hep-th/9607163
  14. 14.
    Gaiotto, D., Moore, G.W., Neitzke A.: Four-dimensional wall-crossing via three-dimensional field theory. Commun. Math. Phys. 299, 163–224 (2010). arXiv:0807.4723
  15. 15.
    Neitzke, A.: On a hyperholomorphic line bundle over the Coulomb branch. arXiv:1110.1619
  16. 16.
    Dey, A., Neitzke, A.: Hyperkähler sigma model and field theory on Gibbons-Hawking spaces. JHEP 04, 158 (2014). arXiv:1401.0349.
  17. 17.
    Haydys A.: Hyper–Kähler and quaternionic Kähler manifolds with S 1-symmetries. J. Geom. Phys. 58(3), 293–306 (2008) Google Scholar
  18. 18.
    Hitchin, N.: On the hyperkähler/quaternion Kähler correspondence. Commun. Math. Phys. 324(1), 77–106 (2013). arXiv:1210.0424
  19. 19.
    Gaiotto, D., Moore, G.W., Neitzke A.: Framed BPS States. arXiv:1006.0146
  20. 20.
    Dimofte, T., Gukov S.: Refined, motivic, and quantum. Lett. Math. Phys. 91 (2010) 1, arXiv:0904.1420.
  21. 21.
    Dimofte, T., Gukov, S., Soibelman, Y.: Quantum Wall Crossing in N=2 Gauge Theories. arXiv:0912.1346
  22. 22.
    Fock, V.V., Goncharov, A.B.: Cluster ensembles, quantization and the dilogarithm. ArXiv Mathematics e-prints (2003). arXiv:math/0311245
  23. 23.
    Fock, V.V., Goncharov, A.B.: The quantum dilogarithm and representations of quantum cluster varieties. Invent. Math. 175, 223–286 (2008). arXiv:math/0702397
  24. 24.
    Fomin, S., Zelevinsky, A.: Cluster algebras I: Foundations. ArXiv Mathematics e-prints (2001). arXiv:math/0104151
  25. 25.
    Fomin S., Zelevinsky A.: Cluster algebras. IV: coefficients. Compos. Math. 143(1), 112–164 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Nakanishi, T.: Periodicities in cluster algebras and dilogarithm identities. In: Representations of algebras and related topics. Proceedings of the 14th international conference on representations of algebras and workshop (ICRA XIV), Tokyo, Japan, August 6–15, 2010., pp. 407–443. European Mathematical Society (EMS), Zürich (2011)Google Scholar
  27. 27.
    Fock, V., Goncharov, A.: “unpublished.” talk by V. Fock at the CQGM workshop on Quantum Dilogarithms and Quantum TeichmÑŸller Theory, Aarhus, August 9–13 (2010)Google Scholar
  28. 28.
    Chekhov, L., Fock, V.V.: Quantum Teichmuller space. Theor. Math. Phys. 120, 1245–1259 (1999). arXiv:math/9908165. [Teor. Mat. Fiz.120,511(1999)]
  29. 29.
    Goncharov, A.: A proof of the pentagon relation for the quantum dilogarithm. arXiv:0706.4054
  30. 30.
    Faddeev, L.: Volkov’s Pentagon for the Modular Quantum Dilogarithm. Funct. Anal. Appl. 45, 291 (2011). arXiv:1201.6464.
  31. 31.
    Faddeev, L.D., Kashaev, R.M.: Quantum Dilogarithm. Mod. Phys. Lett. A9, 427–434 (1994). arXiv:hep-th/9310070
  32. 32.
    Cecotti, S., Neitzke, A., Vafa C.: R-Twisting and 4d/2d Correspondences. arXiv:1006.3435
  33. 33.
    Ip, I.C.-H., Yamazaki M.: Quantum dilogarithm identities at root of unity. Int. Math. Res. Not. 2016(3), 669–695 (2016). arXiv:1412.5777
  34. 34.
    Faddeev, L.D.: Discrete Heisenberg-Weyl group and modular group. Lett. Math. Phys. 34, 249–254 (1995). arXiv:hep-th/9504111
  35. 35.
    Andersen, J. E., Kashaev R.: Complex quantum Chern–Simons. arXiv:1409.1208
  36. 36.
    Dimofte, T.: 3d superconformal theories from three-manifolds. In: New Dualities of Supersymmetric Gauge Theories, pp. 339–373. Springer, Cham (2016). arXiv:1412.7129
  37. 37.
    Kashaev, R.M., Nakanishi, T.: Classical and quantum dilogarithm identities. SIGMA 7, 102 (2011). arXiv:1104.4630
  38. 38.
    Faddeev, L., Kashaev, R., Volkov, A.Y.: Strongly coupled quantum discrete Liouville theory. 1. Algebraic approach and duality. Commun. Math. Phys. 219:199–219 (2001). arXiv:hep-th/0006156
  39. 39.
    Alexandrov, S., Persson, D., Pioline B.: On the topology of the hypermultiplet moduli space in type II/CY string vacua. Phys.Rev. D83, 026001 (2011). arXiv:1009.3026
  40. 40.
    Milgram, M.S., Glasser, L.: On Quadratic Gauss Sums and Variations Thereof. arXiv:1405.3194

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Laboratoire Charles Coulomb (L2C)UMR 5221 CNRS-Université de MontpellierMontpellierFrance
  2. 2.CERN PH-THCase C01600, CERNGeneva 23Switzerland
  3. 3.Laboratoire de Physique Théorique et Hautes EnergiesCNRS UMR 7589, Université Pierre et Marie CurieParis Cedex 05France

Personalised recommendations