Advertisement

Letters in Mathematical Physics

, Volume 106, Issue 7, pp 879–911 | Cite as

Algebraic Lattices in QFT Renormalization

  • Michael Borinsky
Article

Abstract

The structure of overlapping subdivergences, which appear in the perturbative expansions of quantum field theory, is analyzed using algebraic lattice theory. It is shown that for specific QFTs the sets of subdivergences of Feynman diagrams form algebraic lattices. This class of QFTs includes the standard model. In kinematic renormalization schemes, in which tadpole diagrams vanish, these lattices are semimodular. This implies that the Hopf algebra of Feynman diagrams is graded by the coradical degree or equivalently that every maximal forest has the same length in the scope of BPHZ renormalization. As an application of this framework, a formula for the counter terms in zero-dimensional QFT is given together with some examples of the enumeration of primitive or skeleton diagrams.

Keywords

quantum field theory renormalization Hopf algebra of Feynman diagrams algebraic lattices zero-dimensional QFT 

Mathematics Subject Classification

81T18 81T15 81T16 06B99 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Argyres E.N., van Hameren A.F.W., Kleiss R.H.P., Papadopoulos C.G.: Zero-dimensional field theory. Eur. Phys. J. C-Particl. Fields 19(3), 567–582 (2001)ADSMathSciNetzbMATHGoogle Scholar
  2. 2.
    Bender C.M., Wy T.T.: Statistical analysis of Feynman diagrams. Phys. Rev. Lett. 37(3), 117 (1976)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Bergeron N., Sottile F.: Hopf algebras and edge-labeled posets. J. Algebra 216(2), 641–651 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Berghoff, M.: Wonderful compactifications in quantum field theory. arXiv preprint (2014). arXiv:1411.5583 [hep-th]
  5. 5.
    Bessis D., Itzykson C., Zuber J.-B.: Quantum field theory techniques in graphical enumeration. Adv. Appl. Math. 1(2), 109–157 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Borinsky M.: Feynman graph generation and calculations in the Hopf algebra of Feynman graphs. Comput. Phys. Commun. 185(12), 3317–3330 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    Borinsky, M.: Asymptotic enumeration of Feynman diagrams (2015). (In preparation) Google Scholar
  8. 8.
    Brown F., Kreimer D.: Angles, scales and parametric renormalization. Lett. Math. Phys. 103(9), 933–1007 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Connes A., Kreimer D.: Renormalization in quantum field theory and the Riemann–Hilbert problem i: The Hopf algebra structure of graphs and the main theorem. Commun. Math. Phys. 210(1), 249–273 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Connes A., Kreimer D.: Renormalization in quantum field theory and the Riemann–Hilbert Problem ii: The β-function, diffeomorphisms and the renormalization group. Commun. Math. Phys. 216(1), 215–241 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Cvitanović P., Lautrup B., Pearson R.B.: Number and weights of Feynman diagrams. Phys. Rev. D 18(6), 1939 (1978)ADSCrossRefGoogle Scholar
  12. 12.
    Dyson F.J.: Divergence of perturbation theory in quantum electrodynamics. Phys. Rev. 85(4), 631 (1952)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Ehrenborg R.: On posets and Hopf algebras. Adv. Math. 119(1), 1–25 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Figueroa H., Gracia-Bondia J.M.: Combinatorial Hopf algebras in quantum field theory i. Rev. Math. Phys. 17(08), 881–976 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Gurau, R., Rivasseau, V., Sfondrini, A.: Renormalization: an advanced overview. arXiv:1401.5003 (2014)
  16. 16.
    Hurst, C.A.: The enumeration of graphs in the Feynman–Dyson technique. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 214, pp. 44–61. The Royal Society, New York (1952)Google Scholar
  17. 17.
    Joni S.A., Rota G.-C.: Coalgebras and bialgebras in combinatorics. Stud. Appl. Math. 61(2), 93–139 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Kontsevich M.: Intersection theory on the moduli space of curves and the matrix Airy function. Commun. Math. Phys. 147(1), 1–23 (1992)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Kreimer D.: Anatomy of a gauge theory. Ann. Phys. 321(12), 2757–2781 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Krüger, O., Kreimer, D.: Filtrations in Dyson–Schwinger equations: next-to j-leading log expansions systematically. Ann. Phys. (2015)Google Scholar
  21. 21.
    Lando, S.K., Zvonkin, A.K.: Graphs on Surfaces and their Applications, vol. 141. Springer Science & Business Media, Berlin (2013)Google Scholar
  22. 22.
    Lautrup B.: On high order estimates in QED. Phys. Lett. B 69(1), 109–111 (1977)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Manchon, D.: Hopf algebras, from basics to applications to renormalization (2004). arXiv:math/0408405 [hep-th]
  24. 24.
    Schmitt W.R.: Incidence Hopf algebras. J. Pure Appl. Algebra 96(3), 299–330 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Stanley, RP.: Enumerative combinatorics. In: Cambridge Studies in Advanced Mathematics, vol. 49. Cambridge University Press, Cambridge (1997)Google Scholar
  26. 26.
    Stern, M.: Semimodular lattices: theory and applications. In: Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (1999)Google Scholar
  27. 27.
    Weinberg S.: High-energy behavior in quantum field theory. Phys. Rev. 118, 838–849 (1960)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Yeats, K.: Growth estimates for Dyson–Schwinger equations. PhD thesis, Boston University (2008)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Institute of PhysicsHumboldt UniversityBerlinGermany

Personalised recommendations