Advertisement

Letters in Mathematical Physics

, Volume 106, Issue 6, pp 731–740 | Cite as

Bounded Solutions of KdV and Non-Periodic One-Gap Potentials in Quantum Mechanics

  • Dmitry V. Zakharov
  • Sergey A. Dyachenko
  • Vladimir E. Zakharov
Article

Abstract

We describe a broad new class of exact solutions of the KdV hierarchy. In general, these solutions do not vanish at infinity, and are neither periodic nor quasi-periodic. This class includes algebro-geometric finite-gap solutions as a particular case. The spectra of the corresponding Schrödinger operators have the same structure as those of N-gap periodic potentials, except that the reflectionless property holds only in the infinite band. These potentials are given, in a non-unique way, by 2N real positive functions defined on the allowed bands. In this letter we restrict ourselves to potentials with one allowed band on the negative semi-axis; however, our results apply in general. We support our results with numerical calculations.

Keywords

integrable systems Schrödinger operator soliton solutions 

Mathematics Subject Classification

70H06 81U15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Novikov S., Manakov S., Pitaevskii L., Zakharov V.: Theory of solitons. The inverse scattering method. Springer, Berlin (1984)zbMATHGoogle Scholar
  2. 2.
    Gardner C.S., Greene J.M., Kruskal M.D., Miura R.M.: Method for solving the Korteweg-de Vries equation. Phys. Rev. Lett. 19, 1095–1097 (1967)ADSCrossRefzbMATHGoogle Scholar
  3. 3.
    Bargmann V.: On the connection between phase shifts and scattering potential. Rev. Mod. Phys. 21, 488–493 (1949)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Belokolos, E.D., Gesztesy, F., Makarov, K.A., Sakhnovich, L.A.: Matrix-valued generalizations of the theorems of Borg and Hochstadt. In: Evolution equations, Lecture Notes in Pure and Appl. Math., vol. 234, pp. 1–34. Dekker, New York (2003)Google Scholar
  5. 5.
    Marchenko, V.: Nonlinear equations and operator algebras. Math. and its Appl. (Sov. Ser.), vol. 17. D. Reidel Publishing Co., Dordrecht (1988)Google Scholar
  6. 6.
    Zakharov V.: Turbulence in integrable systems. Stud. Appl. Math. 122(3), 219–234 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Zakharov V.E.: Kinetic equation for solitons. Sov. Phys. JETP 33, 538–541 (1971)ADSGoogle Scholar
  8. 8.
    El G.A., Kamchatnov A.M.: Kinetic equation for a dense soliton gas. Phys. Rev. Lett. 95, 204101 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    Zakharov V., Manakov S.: Construction of multidimensional nonlinear integrable systems and their solutions. Funkt. Anal. Pril. 19(2), 11–25 (1985)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Shabat, A.B.: On potentials with zero reflection coefficient. Dinamika sploshnoi sredy, vol. 5, p. 130. Novosibirsk, 1970Google Scholar
  11. 11.
    Krichever, I.: Private communicationGoogle Scholar
  12. 12.
    Bikbaev R.F.: Structure of a shock wave in the theory of the Korteweg-de Vries equation. Phys. Lett. A 141, 289–293 (1989)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Mikikits-Leitner A., Teschl G.: Long-time asymptotics of perturbed finite-gap Korteweg-de Vries solutions. J. Anal. Math. 116, 163–218 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Egorova I., Gladka Z., Kotlyarov V., Teschl G.: Long-time asymptotics for the Korteweg-de Vries equation with step-like initial data. Nonlinearity 26, 1839–1864 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Its, A.R.: Liouville’s theorem and the method of the inverse problem. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) 133, 113–125 (1984)Google Scholar
  16. 16.
    Deift, P.A., Its, A.R., Zhou, X.: A Riemann-Hilbert approach to asymptotic problems arising in the theory of random matrix models, and also in the theory of integrable statistical mechanics. Ann. Math. (2) 146(1), 149–235 (1997)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Dmitry V. Zakharov
    • 1
  • Sergey A. Dyachenko
    • 2
  • Vladimir E. Zakharov
    • 3
  1. 1.Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA
  2. 2.Department of MathematicsUniversity of Illinois at Urbana–ChampaignUrbanaUSA
  3. 3.Department of MathematicsUniversity of ArizonaTucsonUSA

Personalised recommendations