Letters in Mathematical Physics

, Volume 106, Issue 3, pp 381–394 | Cite as

A Summation Formula for Macdonald Polynomials

  • Jan de Gier
  • Michael WheelerEmail author


We derive an explicit sum formula for symmetric Macdonald polynomials. Our expression contains multiple sums over the symmetric group and uses the action of Hecke generators on the ring of polynomials. In the special cases \({t = 1}\) and \({q = 0}\), we recover known expressions for the monomial symmetric and Hall–Littlewood polynomials, respectively. Other specializations of our formula give new expressions for the Jack and q–Whittaker polynomials.


Macdonald polynomials 

Mathematics Subject Classification

Primary 05E05 33D80 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cantini, L., de Gier, J., Wheeler, M.: Matrix product formula for Macdonald polynomials. J. Phys. A: Math. Theor. 48, 384001 (2015). arXiv:1505.00287
  2. 2.
    Cherednik I.: Double affine Hecke algebras and Macdonald’s conjectures. Ann. Math. 141, 191–216 (1995)CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Cherednik I.: Nonsymmetric Macdonald polynomials. Int. Math. Res. Not. 10, 483–515 (1995)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Duchamp, G., Krob, D., Lascoux, A., Leclerc, B., Scharf, T., Thibon, J.Y.: Euler–Poincaré characteristic and polynomial representations of Iwahori–Hecke algebras. Publ. RIMS 31, 179–201 (1995)Google Scholar
  5. 5.
    Haglund, J., Haiman, M., Loehr, N.: A combinatorial formula for Macdonald polynomials. J. Am. Math. Soc 18, 735–761 (2005). arXiv:math/0409538
  6. 6.
    Haglund, J., Haiman, M., Loehr, N.: A combinatorial formula for non-symmetric Macdonald polynomials. Am. J. Math. 130, 359–383 (2008). arXiv:math/0601693
  7. 7.
    Hivert F.: Hecke algebras, difference operators and quasi-symmetric functions. Adv. Math. 155, 181–238 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Kirillov, A.N., Noumi, M.: q-Difference raising operators for Macdonald polynomials and the integrality of transition coefficients. In: Algebraic Methods and q-Special Functions, CRM Proceedings and Lecture Notes, vol. 22 (1999). arXiv:q-alg/9605005
  9. 9.
    Kirillov, A.N., Noumi, M.: Affine Hecke algebras and raising operators for Macdonald polynomials. Duke Math. J. 93(1), 1–39 (1998)Google Scholar
  10. 10.
    Macdonald, I.: A new class of symmetric functions. Publ. I.R.M.A. Strasbourg, Actes 20\({^\textrm{e}}\) Séminaire Lotharingien, vol. 131–171 (1988)Google Scholar
  11. 11.
    Macdonald, I.: Symmetric functions and Hall polynomials, 2nd edn. Clarendon Press, Oxford (1995)Google Scholar
  12. 12.
    Opdam E.: Harmonic analysis for certain representations of graded Hecke algebras. Acta Math. 175, 75–121 (1995)CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Ram, A., Yip, M.: A combinatorial formula for Macdonald polynomials. Adv. Math. 226, 309–31 (2011) arXiv:0803.1146

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsThe University of MelbourneParkvilleAustralia

Personalised recommendations