Letters in Mathematical Physics

, Volume 106, Issue 3, pp 341–363 | Cite as

A Remark on CFT Realization of Quantum Doubles of Subfactors: Case Index \({ < 4}\)

  • Marcel Bischoff


It is well known that the quantum double \({D(N\subset M)}\) of a finite depth subfactor \({N\subset M}\), or equivalently the Drinfeld center of the even part fusion category, is a unitary modular tensor category. It is big open conjecture that all (unitary) modular tensor categories arise from conformal field theory. We show that for every subfactor \({N\subset M}\) with index \({[M:N] < 4}\) the quantum double \({D(N\subset M)}\) is realized as the representation category of a completely rational conformal net. In particular, the quantum double of \({E_6}\) can be realized as a \({\mathbb{Z}_2}\)-simple current extension of \({{{\rm SU}(2)}_{10} \times {{\rm Spin}(11)}_1}\) and thus is not exotic in any sense. As a byproduct, we obtain a vertex operator algebra for every such subfactor. We obtain the result by showing that if a subfactor \({N\subset M }\) arises from \({\alpha}\)-induction of completely rational nets \({\mathcal{A}\subset \mathcal{B}}\) and there is a net \({\tilde{\mathcal{A}}}\) with the opposite braiding, then the quantum \({D(N\subset M)}\) is realized by completely rational net. We construct completely rational nets with the opposite braiding of \({{{\rm SU}(2)}_k}\) and use the well-known fact that all subfactors with index \({[M:N] < 4}\) arise by \({\alpha}\)-induction from \({{{\rm SU}(2)}_k}\).


Conformal field theory Conformal net Subfactor Modular tensor category Fusion categories Vertex operator algebra 

Mathematics Subject Classification

81T40 18D10 46L37 81R15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Böckenhauer, J.: An Algebraic Formulation of Level One Wess–Zumino–Witten Models. Technical Report DESY 95-138 (1996)Google Scholar
  2. 2.
    Böckenhauer, J., Evans, D.E.: Modular invariants, graphs and α-induction for nets of subfactors. I. Commun. Math. Phys. 197(2), 361-386 (1998). arXiv:hep-th/9801171
  3. 3.
    Böckenhauer J., Evans D.E., Kawahigashi Y.: Chiral structure of modular invariants for subfactors. Commun. Math. Phys. 210(3), 733–784 (2000)CrossRefADSzbMATHGoogle Scholar
  4. 4.
    Böckenhauer J., Evans D.E., Kawahigashi Y.: Longo–Rehren subfactors arising from α-induction. Publ. Res. Inst. Math. Sci. 37(1), 1–35 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Böckenhauer J., Evans D.E., Kawahigashi Y.: On α-induction, chiral generators and modular invariants for subfactors. Commun. Math. Phys. 208(2), 429–487 (1999)CrossRefADSzbMATHGoogle Scholar
  6. 6.
    Bischoff, M.: Models in boundary quantum field theory associated with lattices and loop group models. Commun. Math. Phys. 1–32 (2012). arXiv:1108.4889v1 [math-ph]. doi: 10.1007/s00220-012-1511-2
  7. 7.
    Bischoff M., Kawahigashi Y., Longo R.: Characterization of 2d rational local conformal nets and its boundary conditions: the maximal case. Doc. Math. 20, 1137–1184 (2015)MathSciNetGoogle Scholar
  8. 8.
    Bischoff, M., Kawahigashi, Y., Longo, R., Rehren, K.-H.: Phase boundaries in algebraic conformal QFT (2015). Commun. Math. Phys. arXiv:1405.7863v1 [math-ph]
  9. 9.
    Bischoff M., Kawahigashi Y., Longo R., Rehren K.-H.: Tensor categories and endomorphisms of von Neumann algebras: with applications to quantum field theory. In: (eds) Springer Briefs in Mathematical Physics, vol. 3, Springer, New York (2015)Google Scholar
  10. 10.
    Carpi S.: On the representation theory of Virasoro nets. Commun. Math. Phys. 244(2), 261–284 (2004)CrossRefADSMathSciNetzbMATHGoogle Scholar
  11. 11.
    Carpi, S., Kawahigashi, Y., Longo, R., Weiner, M.: From vertex operator algebras to conformal nets and back (2015). arXiv:1503.01260
  12. 12.
    Calegari F., Morrison S., Snyder N.: Cyclotomic integers, fusion categories, and subfactors. Commun. Math. Phys. 303(3), 845–896 (2011)CrossRefADSMathSciNetzbMATHGoogle Scholar
  13. 13.
    Carpi S., Weiner M.: On the uniqueness of diffeomorphism symmetry in conformal field theory. Commun. Math. Phys. 258(1), 203–221 (2005)CrossRefADSMathSciNetzbMATHGoogle Scholar
  14. 14.
    Drinfeld V., Gelaki S., Nikshych D., Ostrik V.: On braided fusion categories. I. Sel. Math. (N.S.) 16(1), 1–119 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Doplicher S., Haag R., Roberts J.E.: Local observables and particle statistics. I. Commun. Math. Phys. 23, 199–230 (1971)CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Davydov A., Müger M., Nikshych D., Ostrik V.: The Witt group of non-degenerate braided fusion categories. J. Reine Angew. Math. 677, 135–177 (2013)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Davydov A., Nikshych D., Ostrik V.: On the structure of the Witt group of braided fusion categories. Sel. Math. (N.S.). 19(1), 237–269 (2013)CrossRefMathSciNetzbMATHGoogle Scholar
  18. 18.
    Doplicher, S., Piacitelli, G.: Any compact group is a gauge group. Rev. Math. Phys. 14(7–8), 873–885 (2002). (Dedicated to Professor Huzihiro Araki on the occasion of his 70th birthday)Google Scholar
  19. 19.
    Evans D.E., Gannon T.: The exoticness and realisability of twisted Haagerup-Izumi modular data. Commun. Math. Phys. 307(2), 463–512 (2011)CrossRefADSMathSciNetzbMATHGoogle Scholar
  20. 20.
    Evans, D.E., Kawahigashi, Y.: Quantum symmetries on operator algebras. In: Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (1998)Google Scholar
  21. 21.
    Fröhlich J., Kerler T.: Quantum groups, quantum categories and quantum field theory. In: Lecture Notes in Mathematics, vol. 1542, Springer, Berlin (1993)Google Scholar
  22. 22.
    Fuchs J., Runkel I., Schweigert C.: TFT construction of RCFT correlators. III. Simple Curr. Nucl. Phys. B. 694(3), 277–353 (2004)ADSMathSciNetzbMATHGoogle Scholar
  23. 23.
    Fredenhagen K., Rehren K.-H., Schroer B.: Superselection sectors with braid group statistics and exchange algebras. I. General theory. Commun. Math. Phys. 125(2), 201–226 (1989)CrossRefADSMathSciNetzbMATHGoogle Scholar
  24. 24.
    Goodman F. M., de la Harpe P., Jones V. F. R.: Coxeter graphs and towers of algebras. In: (eds) Mathematical Sciences Research Institute Publications, vol. 14, Springer, New York (1989)Google Scholar
  25. 25.
    Guido D., Longo R.: The conformal spin and statistics theorem. Commun. Math. Phys. 181(1), 11–35 (1996)CrossRefADSMathSciNetzbMATHGoogle Scholar
  26. 26.
    Haagerup, U.: Principal graphs of subfactors in the index range \({4 < [M:N] < 3+\sqrt 2}\). Subfactors (Kyuzeso, 1993), pp. 1–38. World Scientific Publishing, River Edge, NJ (1994)Google Scholar
  27. 27.
    Haag R.: Local quantum physics. Springer, Berlin (1996)CrossRefzbMATHGoogle Scholar
  28. 28.
    Huang Y.Z., Kirillov A. Jr, Lepowsky J.: Braided tensor categories and extensions of vertex operator algebras. Commun. Math. Phys. 337(3), 1143–1159 (2015)CrossRefADSMathSciNetGoogle Scholar
  29. 29.
    Hong, S.-M., Rowell, E., Wang, Z.: On exotic modular tensor categories. Commun. Contemp. Math. 10(suppl. 1), 1049–1074 (2008)Google Scholar
  30. 30.
    Hayashi T., Yamagami S.: Amenable tensor categories and their realizations as AFD bimodules. J. Funct. Anal. 172(1), 19–75 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  31. 31.
    Izumi M.: The structure of sectors associated with Longo–Rehren inclusions I. General theory. Commun. Math. Phys. 213, 127–179 (2000)CrossRefADSMathSciNetzbMATHGoogle Scholar
  32. 32.
    Izumi M.: The structure of sectors associated with Longo–Rehren inclusions. II. Examples. Rev. Math. Phys. 13(5), 603–674 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  33. 33.
    Jones V.F.R., Morrison S., Snyder N.: The classification of subfactors of index at most 5. Bull. Am. Math. Soc. (N.S.) 51(2), 277–327 (2014)CrossRefMathSciNetzbMATHGoogle Scholar
  34. 34.
    Jones, V.F.R.: Some unitary representations of Thompson’s groups F and T (2014). arXiv:1412.7740
  35. 35.
    Jones V.F.R.: Index for subfactors. Invent. Math. 72(1), 1–25 (1983)CrossRefADSMathSciNetzbMATHGoogle Scholar
  36. 36.
    Kawahigashi, Y.: Conformal field theory, tensor categories and operator algebras, J. Phys. A 48(30), 303001, 57 (2015)Google Scholar
  37. 37.
    Kawahigashi Y.: A remark on gapped domain walls between topological phases. Lett. Math. Phys. 105(7), 893–899 (2015)CrossRefADSMathSciNetGoogle Scholar
  38. 38.
    Kawahigashi Y., Longo R.: Classification of local conformal nets case \({c < 1}\). Ann. Math. 160(2), 493–522 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  39. 39.
    Kawahigashi Y., Longo R., Müger M.: Multi-iterval subfactors and modularity of representations in conformal field theory. Commun. Math. Phys. 219, 631–669 (2001) arXiv:math/9903104 CrossRefADSzbMATHGoogle Scholar
  40. 40.
    KirillovJr A., Ostrik V.: On a q-analogue of the McKay correspondence and the ADE classification of \({\mathfrak{sl}\_2}\) conformal field theories. Adv. Math. 171(2), 183–227 (2002)CrossRefMathSciNetGoogle Scholar
  41. 41.
    Kosaki H.: Extension of Jones’ theory on index to arbitrary factors. J. Funct. Anal. 66(1), 123–140 (1986)CrossRefMathSciNetzbMATHGoogle Scholar
  42. 42.
    Longo, R.: Conformal subnets and intermediate subfactors. Commun. Math. Phys. 237, 7–30 (2003). arXiv:math/0102196v2
  43. 43.
    Longo, R., Rehren, K.-H.: Nets of subfactors. Rev. Math. Phys. 7, 567–597 (1995). arXiv:hep-th/9411077
  44. 44.
    Longo, R., Roberts, J.E.: A theory of dimension. K-Theory 11(2), 103–159 (1997). arXiv:funct-an/9604008v1
  45. 45.
    Longo R., Xu F.: Topological sectors and a dichotomy in conformal field theory. Commun. Math. Phys. 251(2), 321–364 (2004)CrossRefADSMathSciNetzbMATHGoogle Scholar
  46. 46.
    Müger M.: From subfactors to categories and topology. I. Frobenius algebras in and Morita equivalence of tensor categories. J. Pure Appl. Algebra 180(1–2), 81–157 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  47. 47.
    Müger M.: From subfactors to categories and topology. II. The quantum double of tensor categories and subfactors. J. Pure Appl. Algebra 180(1–2), 159–219 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  48. 48.
    Müger M.: Conformal orbifold theories and braided crossed G-categories. Commun. Math. Phys. 260, 727–762 (2005)CrossRefADSzbMATHGoogle Scholar
  49. 49.
    Müger, M.: On superselection theory of quantum fields in low dimensions. In: XVIth International Congress on Mathematical Physics, pp. 496–503 (2010)Google Scholar
  50. 50.
    Masuda T.: Generalization of Longo-Rehren construction to subfactors of infinite depth and amenability of fusion algebras. J. Funct. Anal. 171(1), 53–77 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  51. 51.
    Moore, G., Seiberg, N.: Lectures on RCFT. Superstrings’89 (Trieste, 1989), pp. 1–129. World Scientific Publishing, River Edge, NJ (1990)Google Scholar
  52. 52.
    Ocneanu, A.: Operator algebras, topology and subgroups of quantum symmetry—construction of subgroups of quantum groups. In: Taniguchi Conference on Mathematics Nara’98, pp. 235–263 (2001)Google Scholar
  53. 53.
    Ocneanu A.: Quantized groups, string algebras and Galois theory for algebras. Oper. Algebras Appl. 2, 119–172 (1988)MathSciNetGoogle Scholar
  54. 54.
    Ostrik, V.: Pivotal fusion categories of rank 3 (with an appendix written jointly with dmitri nikshych) (2013). arXiv:1309.4822
  55. 55.
    Popa S.: Classification of amenable subfactors of type II. Acta Math. 172(2), 163–255 (1994)CrossRefMathSciNetzbMATHGoogle Scholar
  56. 56.
    Popa S.: Symmetric enveloping algebras, amenability and AFD properties for subfactors. Math. Res. Lett. 1(4), 409–425 (1994)CrossRefMathSciNetzbMATHGoogle Scholar
  57. 57.
    Popa, S.: Classification of subfactors and their endomorphisms. In: CBMS Regional Conference Series in Mathematics, vol. 86. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence (1995)Google Scholar
  58. 58.
    Rehren K.-H.: Canonical tensor product subfactors. Commun. Math. Phys. 211(2), 395–406 (2000)CrossRefADSMathSciNetzbMATHGoogle Scholar
  59. 59.
    Rehren, K.-H.: Braid group statistics and their superselection rules. In: The Algebraic Theory of Superselection Sectors (Palermo, 1989), pp. 333– 355 (1990)Google Scholar
  60. 60.
    Schauenburg P.: The monoidal center construction and bimodules. J. Pure Appl. Algebra 158(2-3), 325–346 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  61. 61.
    Wassermann, A.: Operator algebras and conformal field theory III. Fusion of positive energy representations of LSU(N) using bounded operators. Invent. Math. 133(3), 467–538 (1998). arXiv:math/9806031v1 [math.OA]
  62. 62.
    Xu, F.: Jones-Wassermann subfactors for disconnected intervals. Commun. Contemp. Math. 2(3), 307–347 (2000). arXiv:q-alg/9704003
  63. 63.
    Xu, F.: Unpublished note. As cited in appendix [CMS11] (2001)Google Scholar
  64. 64.
    Xu F.: Mirror extensions of local nets. Commun. Math. Phys. 270(3), 835–847 (2007)CrossRefADSzbMATHGoogle Scholar
  65. 65.
    Xu, F.: On affine orbifold nets associated with outer automorphisms. Commun. Math. Phys. 291, 845–861 (2009). arXiv:1002.2710v1 [math.OA]

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of MathematicsVanderbilt UniversityNashvilleUSA

Personalised recommendations