Letters in Mathematical Physics

, Volume 106, Issue 2, pp 147–167 | Cite as

Root System of Singular Perturbations of the Harmonic Oscillator Type Operators

  • Boris Mityagin
  • Petr SieglEmail author


We analyze perturbations of the harmonic oscillator type operators in a Hilbert space \({\mathcal{H}}\), i.e. of the self-adjoint operator with simple positive eigenvalues μ k satisfying μ k+1μ k ≥ Δ > 0. Perturbations are considered in the sense of quadratic forms. Under a local subordination assumption, the eigenvalues of the perturbed operator become eventually simple and the root system contains a Riesz basis.


non-self-adjoint operators harmonic oscillator Riesz basis quadratic forms singular potentials 

Mathematics Subject Classification

47A55 47A70 34L10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramowitz, M., Stegun, I.A. (eds.): Handbook of mathematical functions with formulas, graphs, and mathematical tables. US Government Printing Office, Washington, D.C. (1964)Google Scholar
  2. 2.
    Adduci, J.: Perturbations of selfadjoint operators with discrete spectrum. PhD thesis, The Ohio State University (2011)Google Scholar
  3. 3.
    Adduci J., Mityagin B.: Eigensystem of an L 2-perturbed harmonic oscillator is an unconditional basis. Central Eur. J. Math. 10, 569–589 (2012)CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    Adduci J., Mityagin B.: Root System of a Perturbation of a Selfadjoint Operator with Discrete Spectrum. Int. Equ. Op. Theory 73, 153–175 (2012)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Agranovich M.S.: On series in root vectors of operators defined by forms with a selfadjoint principal part. Funktsional‘nyĭ Analiz i ego Prilozheniya 28(95), 1–21 (1994). English edition: Agranovich, M.S.: Funct. Anal. Appl. 28, 151–167 (1994)Google Scholar
  6. 6.
    Askey R., Wainger S.: Mean convergence of expansions in Laguerre and Hermite series. Am. J. Math. 87, 695–708 (1965)CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Davies E.B.: States for non-self-adjoint Schrödinger operators. Commun. Math. Phys. 200, 35–41 (1999)CrossRefADSzbMATHGoogle Scholar
  8. 8.
    Davies E.B.: Wild spectral behaviour of anharmonic oscillators. Bull. Lond. Math. Soc. 32, 432–438 (2000)CrossRefADSzbMATHGoogle Scholar
  9. 9.
    Davies E.B., Kuijlaars A.B.J.: Spectral asymptotics of the non-self-adjoint harmonic oscillator. J. Lond. Math. Soc. 70, 420–426 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Dunford, N., Schwartz, J.T.: Linear Operators, Part 3, Spectral Operators. Wiley-Interscience, New York-London-Sydney (1971)Google Scholar
  11. 11.
    Dunford, N., Schwartz, J.T.: Linear Operators, Part 1. Wiley, New York (1988)Google Scholar
  12. 12.
    Dym, H., Katsnelson, V.: Contributions of Issai Schur to Analysis, Studies in Memory of Issai Schur, Vol. 210 of Progr. in Math. Birkhäuser, Boston, MA (2003). arXiv:0706.1868
  13. 13.
    Feller, W.: An Introduction to Probability Theory and Its Applications. Wiley, New York (1968)Google Scholar
  14. 14.
    Giertz M.: On the solutions in L 2(−∞, ∞) of y′′ + (λ −q(x))y = 0 when q is rapidly increasing. Proc. Lond. Math. Soc. 14, 53–73 (1964)CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Gohberg, I.C., Krein, M.G.: Introduction to the Theory of Linear Nonselfadjoint Operators in Hilbert Space. AMS, Providence (1969)Google Scholar
  16. 16.
    Halmos, P.R., Sunder, V.S.: Bounded integral operators on L 2 spaces, Vol. 96 of Ergebnisse der Mathematik und ihrer Grenzgebiete (Results in Mathematics and Related Areas). Springer, Berlin (1978)Google Scholar
  17. 17.
    Henry R.: Spectral instability of some non-selfadjoint anharmonic oscillators. Comptes Rendus Mathématique Académie des Sci. Paris 350, 1043–1046 (2012)CrossRefMathSciNetzbMATHGoogle Scholar
  18. 18.
    Henry R.: Spectral instability for even non-selfadjoint anharmonic oscillators. J. Spectr. Theory 4, 349–364 (2014)CrossRefMathSciNetzbMATHGoogle Scholar
  19. 19.
    Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1995)Google Scholar
  20. 20.
    Markus, A.: Introduction to the Spectral Theory of Polynomial Operator Pencils. American Mathematical Society, Providence (1988)Google Scholar
  21. 21.
    Milne W.E.: On the maximum absolute value of the derivative of \({e^{-x^2}p_n(x)}\). Trans. Am. Math. Soc. 33, 143–146 (1931)MathSciNetGoogle Scholar
  22. 22.
    Mityagin, B.: The spectrum of a Harmonic Oscillator Operator Perturbed by Point Interactions. (2014). arXiv:1407.4153
  23. 23.
    Mityagin, B.: The spectrum of a harmonic oscillator operator perturbed by point interactions. Int. J. Theor. Phys. 54, 4068–4085 (2015)Google Scholar
  24. 24.
    Mityagin, B., Siegl, P., Viola, J.: Differential operators admitting various rates of spectral projection growth. (2013).arXiv:1309.3751
  25. 25.
    Schur I.: Bemerkungen zur Theorie der Beschrankten Bilinearformen mit unendlich vielen Veranderlichten. Journal für die reine und angewandte Mathematik 140, 1–28 (1911)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Shkalikov A.: On the basis property of root vectors of a perturbed self-adjoint operator. Proc. Steklov Inst. Math. 269, 284–298 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  27. 27.
    Shkalikov A.: Eigenvalue asymptotics of perturbed self-adjoint operators. Methods Funct. Anal. Topol. 18, 79–89 (2012)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Siegl, P., Krejčiřík, D.: On the metric operator for the imaginary cubic oscillator. Phys. Rev. D 86, 121702 (2012)Google Scholar
  29. 29.
    Simon B.: Hamiltonians defined as quadratic forms. Commun. Math. Phys. 21, 192–210 (1971)CrossRefADSzbMATHGoogle Scholar
  30. 30.
    Titchmarsh E.C.: On the asymptotic distribution of eigenvalues. Quarter. J. Math. 5, 228–240 (1954)ADSMathSciNetzbMATHGoogle Scholar
  31. 31.
    Titchmarsh, E.C.: Eigenfunction Expansions Associated with Second-Order Differential Equations. Part II. Clarendon Press, Oxford (1958)Google Scholar
  32. 32.
    Wyss C.: Riesz bases for p-subordinate perturbations of normal operators. J. Funct. Anal. 258, 208–240 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  33. 33.
    Xu G.Q., Yung S.P.: The expansion of a semigroup and a Riesz basis criterion. J. Differ. Equ. 210, 1–24 (2005)CrossRefADSMathSciNetzbMATHGoogle Scholar
  34. 34.
    Zalik R.A.: Inequalities for weighted polynomials. J. Approx. Theory 37, 137–146 (1983)CrossRefMathSciNetzbMATHGoogle Scholar
  35. 35.
    Zwart H.: Riesz basis for strongly continuous groups. J. Differ. Equ. 249, 2397–2408 (2010)CrossRefADSMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of MathematicsThe Ohio State UniversityColumbusUSA
  2. 2.Mathematishes InstitutUniversität BernBernSwitzerland
  3. 3.Nuclear Physics Institute ASCRŘežCzech Republic

Personalised recommendations