Advertisement

Letters in Mathematical Physics

, Volume 105, Issue 12, pp 1725–1734 | Cite as

The Equitable Presentation of \({\mathfrak{osp}_q(1|2)}\) and a q-Analog of the Bannai–Ito Algebra

  • Vincent X. GenestEmail author
  • Luc Vinet
  • Alexei Zhedanov
Article

Abstract

The equitable presentation of the quantum superalgebra \({\mathfrak{osp}_q(1|2)}\), in which all generators appear on an equal footing, is exhibited. It is observed that in their equitable presentations, the quantum algebras \({\mathfrak{osp}_q(1|2)}\) and \({\mathfrak{sl}_q(2)}\) are related to one another by the formal transformation \({q\rightarrow -q}\). A q-analog of the Bannai–Ito algebra is shown to arise as the covariance algebra of \({\mathfrak{osp}_q(1|2)}\).

Keywords

quantum superalgebra \({\mathfrak{osp}_{q}(1|2)}\) Bannai–Ito algebra 

Mathematics Subject Classification

17B37 20G42 81R50 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    De Bie, H., Genest, V.X., Vinet, L.: A Dirac-Dunkl equation on S 2 and the Bannai–Ito algebra. (2015). arXiv:1501.03108
  2. 2.
    Chakrabarti A.: On the coupling of 3 angular momenta. Annales de l’Institut Henri Poincaré, Section A 1(3), 301–327 (1964)zbMATHGoogle Scholar
  3. 3.
    Edmonds A.R.: Angular momentum in quantum mechanics. Investigations in physics. Princeton University Press, Princeton (1996)Google Scholar
  4. 4.
    Floreanini R., Vinet L.: q-Analogues of the parabose and parafermi oscillators and representations of quantum algebras. J. Phys. A Math. Gen. 23(19), L1019 (1990)zbMATHMathSciNetCrossRefADSGoogle Scholar
  5. 5.
    Gao S., Wang Y., Hou B.: The classification of Leonard triples of Racah type. Linear Algebra Appl. 439(7), 1834–1861 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Genest V.X., Vinet L., Zhedanov A.: Superintegrability in two dimensions and the Racah–Wilson algebra. Lett. Math. Phys. 104(8), 931–952 (2014)zbMATHMathSciNetCrossRefADSGoogle Scholar
  7. 7.
    Genest V.X., Vinet L., Zhedanov A.: The Bannai–Ito algebra and a superintegrable system with reflections on the two-sphere. J. Phys. A Math. Theor. 47(20), 205202 (2014)MathSciNetCrossRefADSGoogle Scholar
  8. 8.
    Genest V.X., Vinet L., Zhedanov A.: The Bannai–Ito polynomials as Racah coefficients of the sl −1(2) algebra. Proc. Am. Math. Soc. 142(5), 1545–1560 (2014)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Genest V.X., Vinet L., Zhedanov A.: The equitable Racah algebra from three \({\mathfrak{su}(1,1)}\) algebras. J. Phys. A Math. Theor. 47(2), 025203 (2014)MathSciNetCrossRefADSGoogle Scholar
  10. 10.
    Genest V.X., Vinet L., Zhedanov A.: A Laplace-Dunkl equation on S 2 and the Bannai–Ito algebra. Commun. Math. Phys. 336(1), 243–259 (2015)zbMATHMathSciNetCrossRefADSGoogle Scholar
  11. 11.
    Genest, V.X., Vinet, L., Zhedanov, A.: The quantum superalgebra \({\mathfrak{osp}_q(1|2)}\) and a q-generalization of the Bannai–Ito polynomials. (2015). arXiv:1501.05602
  12. 12.
    Granovskii Y.A., Zhedanov A.: Nature of the symmetry group of the 6j symbol. J. Exp. Theor. Phys. 94(10), 1982–1985 (1988)MathSciNetGoogle Scholar
  13. 13.
    Granovskii Y.A., Zhedanov A.: Hidden symmetry of the Racah and Clebsch–Gordan problems for the quantum algebra sl q(2). J. Gr. Theory Phys. 1, 161–171 (1993)Google Scholar
  14. 14.
    Granovskii Y.A., Zhedanov A.: Linear covariance algebra for SL q(2). J. Phys. A Math. Gen. 26(7), L357–L359 (1993)MathSciNetCrossRefADSGoogle Scholar
  15. 15.
    Hartwig B., Terwilliger P.: The Tetrahedron algebra, the Onsager algebra, and the \({\mathfrak{sl}_2}\) loop algebra. J. Algebra 308(2), 840–863 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Ito T., Terwilliger P., Weng C.: The quantum algebra \({U_{q}(\mathfrak{sl}_2)}\) and its equitable presentation. J. Algebra 298(1–2), 284–301 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Kalnins E.G., Miller W., Post S.: Wilson polynomials and the generic superintegrable system on the 2-sphere. J. Phys. A Math. Theor. 40(38), 11525 (2007)zbMATHMathSciNetCrossRefADSGoogle Scholar
  18. 18.
    Koornwinder T.: The relationship between Zhedanov’s algebra AW(3) and the double affine hecke algebra in the rank one case. SIGMA 311, 63 (2007)MathSciNetGoogle Scholar
  19. 19.
    Kulish P.P., Yu Reshetikhin N.: Universal R-Matrix of the quantum superalgebra osp(1|2). Lett. Math. Phys. 18(2), 143–149 (1989)zbMATHMathSciNetCrossRefADSGoogle Scholar
  20. 20.
    Lesniewski A.: A remark on the Casimir elements of Lie superalgebras and quantized Lie superalgebras. J. Math. Phys. 36(3), 1457–1461 (1995)zbMATHMathSciNetCrossRefADSGoogle Scholar
  21. 21.
    Lévy-Leblond J.M., Lévy-Nahas M.: Symmetrical coupling of three angular momenta. J. Math. Phys. 6(9), 1372 (1965)zbMATHCrossRefADSGoogle Scholar
  22. 22.
    Terwilliger P.: The equitable presentation for the quantum group \({U_q(\mathfrak{g})}\) associated with a symmetrizable Kac–Moody algebra \({\mathfrak{g}}\). J. Algebra 298(1–2), 302–319 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Terwilliger P.: The universal Askey–Wilson algebra and the equitable presentation of \({U_{q}(\mathfrak{sl}_2)}\). SIGMA 7, 99 (2011)MathSciNetGoogle Scholar
  24. 24.
    Tsujimoto S., Vinet L., Zhedanov A.: From sl q(2) to a parabosonic Hopf algebra. SIGMA 7, 93–105 (2011)MathSciNetGoogle Scholar
  25. 25.
    Tsujimoto S., Vinet L., Zhedanov A.: Dunkl shift operators and Bannai–Ito polynomials. Adv. Math. 229(4), 2123–2158 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Underwood, R.G.: An introduction to Hopf algebras. Springer (2011)Google Scholar
  27. 27.
    Zhedanov A.: “Hidden” symmetry of Askey–Wilson polynomials. Theor. Math. Phys. 89(2), 1146–1157 (1991)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Vincent X. Genest
    • 1
    Email author
  • Luc Vinet
    • 1
  • Alexei Zhedanov
    • 2
  1. 1.Centre de recherches mathématiquesUniversité de MontréalMontrealCanada
  2. 2.Donetsk Institute for Physics and TechnologyDonetskUkraine

Personalised recommendations