Letters in Mathematical Physics

, Volume 105, Issue 9, pp 1193–1222 | Cite as

Homotopy Colimits and Global Observables in Abelian Gauge Theory

  • Marco Benini
  • Alexander Schenkel
  • Richard J. Szabo


We study chain complexes of field configurations and observables for Abelian gauge theory on contractible manifolds, and show that they can be extended to non-contractible manifolds using techniques from homotopy theory. The extension prescription yields functors from a category of manifolds to suitable categories of chain complexes. The extended functors properly describe the global field and observable content of Abelian gauge theory, while the original gauge field configurations and observables on contractible manifolds are recovered up to a natural weak equivalence.


Abelian gauge theory global configurations and observables chain complexes homotopy limits and colimits 

Mathematics Subject Classification

70S15 81T13 55U15 55N20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abbati M.C., Cirelli R., Mania A., Michor P.: Smoothness of the action of the gauge transformation group on connections. J. Math. Phys. 27, 2469 (1986)MathSciNetADSCrossRefzbMATHGoogle Scholar
  2. 2.
    Abbati M.C., Cirelli R., Mania A.: The orbit space of the action of the gauge transformation group on connections. J. Geom. Phys. 6, 537 (1989)MathSciNetADSCrossRefzbMATHGoogle Scholar
  3. 3.
    Becker, C., Schenkel, A., Szabo, R.J.: Differential cohomology and locally covariant quantum field theory. arXiv:1406.1514 [hep-th]
  4. 4.
    Belov, D., Moore, G.W.: Holographic action for the self-dual field. arXiv:hep-th/0605038
  5. 5.
    Benini, M.: Optimal space of linear classical observables for Maxwell k-forms via spacelike and timelike compact de Rham cohomologies. arXiv:1401.7563 [math-ph]
  6. 6.
    Benini, M., Dappiaggi, C., Hack, T.-P., Schenkel, A.: A C *-algebra for quantized principal U(1)-connections on globally hyperbolic Lorentzian manifolds. Commun. Math. Phys. 332, 477 (2014). arXiv:1307.3052 [math-ph]
  7. 7.
    Benini, M., Dappiaggi, C., Schenkel, A.: Quantized Abelian principal connections on Lorentzian manifolds. Commun. Math. Phys. 330, 123 (2014). arXiv:1303.2515 [math-ph]
  8. 8.
    Bouwknegt P.: Lectures on cohomology, T-duality, and generalized geometry. Lect. Notes Phys. 807, 261 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    Brunetti, R., Fredenhagen, K., Rejzner, K.: Quantum gravity from the point of view of locally covariant quantum field theory. arXiv:1306.1058 [math-ph]
  10. 10.
    Brunetti, R., Fredenhagen, K., Ribeiro, P.L.: Algebraic structure of classical field theory I: Kinematics and linearized dynamics for real scalar fields. arXiv:1209.2148 [math-ph]
  11. 11.
    Brunetti, R., Fredenhagen, K., Verch, R.: The generally covariant locality principle: a new paradigm for local quantum field theory. Commun. Math. Phys. 237, 31 (2003). arXiv:math-ph/0112041
  12. 12.
    Brylinski J.-L.: Loop Spaces, Characteristic Classes and Geometric Quantization. Birkhäuser, Boston (2007)Google Scholar
  13. 13.
    Castiglioni, J.L., Cortiñas, G.: Cosimplicial versus DG-rings: a version of the Dold–Kan correspondence. J. Pure Appl. Algebra 191, 119 (2004). arXiv:math.KT/0306289
  14. 14.
    Ciolli, F., Ruzzi, G., Vasselli, E.: Causal posets, loops and the construction of nets of local algebras for QFT. Adv. Theor. Math. Phys. 16, 645 (2012). arXiv:1109.4824 [math-ph]
  15. 15.
    Ciolli, F., Ruzzi, G., Vasselli, E.: QED representation for the net of causal loops. arXiv:1305.7059 [math-ph]
  16. 16.
    Crainic, M.: Differentiable and algebroid cohomology, van Est isomorphisms, and characteristic classes. Comment. Math. Helv. 78 681 (2003). arXiv:math.DG/0008064
  17. 17.
    Dappiaggi, C., Lang, B.: Quantization of Maxwell’s equations on curved backgrounds and general local covariance. Lett. Math. Phys. 101, 265 (2012). arXiv:1104.1374 [gr-qc]
  18. 18.
    Dappiaggi, C., Siemssen, D.: Hadamard states for the vector potential on asymptotically flat spacetimes. Rev. Math. Phys. 25, 1350002 (2013). arXiv:1106.5575 [gr-qc]
  19. 19.
    Dugger, D.: A primer on homotopy colimits. Available at
  20. 20.
    Dwyer, W.G., Spalinski, J.: Homotopy theories and model categories. In: Handbook of Algebraic Topology, p. 73. North-Holland, Amsterdam (1995)Google Scholar
  21. 21.
    Fantechi B.: Stacks for everybody. Progr. Math. 201, 349 (2001)MathSciNetGoogle Scholar
  22. 22.
    Fewster, C.J., Lang, B.: Dynamical locality of the free Maxwell field. arXiv:1403.7083 [math-ph]
  23. 23.
    Fewster, C.J., Pfenning, M.J.: A quantum weak energy inequality for spin one fields in curved space-time. J. Math. Phys. 44, 4480 (2003). arXiv:gr-qc/0303106
  24. 24.
    Fiorenza, D., Sati, H., Schreiber, U.: A higher stacky perspective on Chern–Simons theory. In: Calaque, D., Strobl, T. (eds.) Mathematical Aspects of Quantum Field Theories. Mathematical Physics Studies, p. 153. Springer, Berlin (2015). arXiv:1301.2580 [hep-th]
  25. 25.
    Fredenhagen, K.: Generalizations of the theory of superselection sectors. In: Kastler, D. (ed.) The Algebraic Theory of Superselection Sectors: Introduction and Recent Results, p. 379. World Scientific Publishing, Singapore (1990)Google Scholar
  26. 26.
    Fredenhagen, K.: Global observables in local quantum physics. In: Araki, H., Ito, K.R., Kishimoto, A., Ojima, I. (eds.) Quantum and Non-Commutative Analysis: Past, Present and Future Perspectives, p. 41. Kluwer Academic Publishers, Dordrecht (1993)Google Scholar
  27. 27.
    Fredenhagen K., Rehren K.-H., Schroer B.: Superselection sectors with braid group statistics and exchange algebras II: geometric aspects and conformal covariance. Rev. Math. Phys. 4, 113 (1992)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Fredenhagen, K., Rejzner, K.: Batalin–Vilkovisky formalism in the functional approach to classical field theory. Commun. Math. Phys. 314, 93 (2012). arXiv:1101.5112 [math-ph]
  29. 29.
    Fredenhagen, K., Rejzner, K.: Batalin–Vilkovisky formalism in perturbative algebraic quantum field theory. Commun. Math. Phys. 317, 697 (2013). arXiv:1110.5232 [math-ph]
  30. 30.
    Freed, D.S.: Dirac charge quantization and generalized differential cohomology. Surv. Differ. Geom. VII, 129 (2000). arXiv:hep-th/0011220
  31. 31.
    Freed, D.S., Witten, E.: Anomalies in string theory with D-branes. Asian J. Math. 3, 819 (1999). arXiv:hep-th/9907189
  32. 32.
    Goerss P.G., Jardine J.F.: Simplicial Homotopy Theory. Birkhäuser, Basel (1999)CrossRefzbMATHGoogle Scholar
  33. 33.
    Hollander, S.: A homotopy theory for stacks. Isr. J. Math. 163, 93 (2008). arXiv:math.AT/0110247
  34. 34.
    Hollands, S.: Renormalized quantum Yang–Mills fields in curved spacetime. Rev. Math. Phys. 20, 1033 (2008). arXiv:0705.3340 [gr-qc]
  35. 35.
    Hopkins, M.J., Singer, I.M.: Quadratic functions in geometry, topology, and M-theory. J. Differ. Geom. 70, 329 (2005). arXiv:math.AT/0211216
  36. 36.
    Jardine J.F.: A closed model structure for differential graded algebras. Fields Inst. Commun. 17, 55 (1997)MathSciNetGoogle Scholar
  37. 37.
    Khavkine, I.: Covariant phase space, constraints, gauge and the Peierls formula. Int. J. Mod. Phys. A 29, 1430009 (2014). arXiv:1402.1282 [math-ph]
  38. 38.
    Khavkine, I.: Local and gauge invariant observables in gravity. arXiv:1503.03754 [gr-qc]
  39. 39.
    Rodríguez-González, B.: Realizable homotopy colimits. Theor. Appl. Categ. 29, 609 (2014). arXiv:1104.0646 [math.AG]
  40. 40.
    Sanders, K., Dappiaggi, C., Hack, T.-P.: Electromagnetism, local covariance, the Aharonov–Bohm effect and Gauss’ law. Commun. Math. Phys. 328, 625 (2014). arXiv:1211.6420 [math-ph]
  41. 41.
    Szabo, R.J.: Quantization of higher Abelian gauge theory in generalized differential cohomology. PoS ICMP 2012, 009 (2012). arXiv:1209.2530 [hep-th]
  42. 42.
    Vistoli, A.: Grothendieck topologies, fibred categories and descent theory. Math. Surv. Monogr. 123, 1 (2005). arXiv:math.AG/0412512

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Marco Benini
    • 1
    • 2
    • 3
  • Alexander Schenkel
    • 1
    • 2
    • 3
  • Richard J. Szabo
    • 1
    • 2
    • 3
  1. 1.Department of MathematicsHeriot-Watt UniversityEdinburghUK
  2. 2.Maxwell Institute for Mathematical SciencesEdinburghUK
  3. 3.The Tait InstituteEdinburghUK

Personalised recommendations