Letters in Mathematical Physics

, Volume 105, Issue 4, pp 523–549 | Cite as

QFT Over the Finite Line. Heat Kernel Coefficients, Spectral Zeta Functions and Selfadjoint Extensions

  • Jose M. Muñoz-CastañedaEmail author
  • Klaus Kirsten
  • Michael Bordag


Following the seminal works of Asorey–Ibort–Marmo and Muñoz–Castañeda–Asorey about selfadjoint extensions and quantum fields in bounded domains, we compute all the heat kernel coefficients for any strongly consistent selfadjoint extension of the Laplace operator over the finite line [0, L]. The derivative of the corresponding spectral zeta function at s = 0 (partition function of the corresponding quantum field theory) is obtained. To compute the correct expression for the a 1/2 heat kernel coefficient, it is necessary to know in detail which non-negative selfadjoint extensions have zero modes and how many of them they have. The answer to this question leads us to analyze zeta function properties for the Von Neumann–Krein extension, the only extension with two zero modes.


Quantum Theory Quantum field theory on curved space backgrounds Casimir effect Scattering theory Parameter dependent boundary value problems Boundary value problems for second-order elliptic equations Zeta and L-functions: analytic theory Symmetric and selfadjoint operators General theory of linear operators 

Mathematics Subject Classification

81S99 81T20 81T55 81U99 34B08 35J25 11M36 47B25 47A10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Asorey M., Munoz-Castaneda J.M.: Attractive and repulsive Casimir vacuum energy with general boundary conditions. Nucl. Phys. B 874, 852–876 (2013)CrossRefADSzbMATHMathSciNetGoogle Scholar
  2. 2.
    Asorey M., Garcia-Alvarez D., Munoz-Castaneda J.M.: Vacuum energy and renormalization on the edge. J. Phys. A 40, 6767–6776 (2007)CrossRefADSzbMATHGoogle Scholar
  3. 3.
    Zettl A.: Sturm–Liouville theory, mathematical surveys and monographs. American Mathematical Society, Providence (2005)Google Scholar
  4. 4.
    Munoz-Castaneda, J.M.: Boundary effects in quantum field theory. PhD dissertation (in spanish), Zaragoza Univ. (2009)Google Scholar
  5. 5.
    Pérez-Pardo, J.M.: On the theory of self-adjoint extensions of the Laplace–Beltrami operator, quadratic forms and symmetry. ArXiv e-prints (2013)Google Scholar
  6. 6.
    Asorey M., Ibort A., Marmo G.: Global theory of quantum boundary conditions and topology change. Int. J. Mod. Phys. A 20, 1001–1026 (2005)CrossRefADSzbMATHMathSciNetGoogle Scholar
  7. 7.
    Elizalde E., Odintsov S.D., Romeo A., Bytsenko A.A., Zerbini S.: Zeta regularization techniques with applications. World Scientific, Singapore (1994)CrossRefzbMATHGoogle Scholar
  8. 8.
    Gilkey P.B.: Invariance theory, the heat equation and the Atiyah–Singer index theorem. CRC Press, Boca Raton (1995)zbMATHGoogle Scholar
  9. 9.
    Gilkey P.B.: Asymptotic formulae in spectral geometry. Chapman & Hall/CRC, Boca Raton (2004)zbMATHGoogle Scholar
  10. 10.
    Kirsten K.: Spectral functions in mathematics and physics. Chapman & Hall/CRC, Boca Raton (2002)zbMATHGoogle Scholar
  11. 11.
    Vassilevich D.V.: Heat kernel expansion: user’s manual. Phys. Rep. 388, 279–360 (2003)CrossRefADSzbMATHMathSciNetGoogle Scholar
  12. 12.
    Ray D.B., Singer I.M.: R-torsion and the Laplacian on Riemannian manifolds. Adv. Math. 7, 145–210 (1971)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Blau S., Visser M., Wipf A.: Zeta functions and the Casimir energy. Nucl. Phys. B 310, 163 (1988)CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Bordag, M., Klimchitskaya, G.L., Mohideen, U., Mostepanenko, V.M.: Advances in the Casimir effect. Oxford University Press, New York (2009)Google Scholar
  15. 15.
    Bordag M., Mohideen U., Mostepanenko V.M.: New developments in the Casimir effect. Phys. Rep. 353, 1–205 (2001)CrossRefADSzbMATHMathSciNetGoogle Scholar
  16. 16.
    Bytsenko A.A., Cognola G., Vanzo L., Zerbini S.: Quantum fields and extended objects in space-times with constant curvature spatial section. Phys. Rep. 266, 1–126 (1996)CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    Dowker J.S., Critchley R.: Effective Lagrangian and energy momentum tensor in de Sitter space. Phys. Rev. D 13, 3224 (1976)CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Dowker J.S., Kennedy G.: Finite temperature and boundary effects in static space-times. J. Phys. A 11, 895 (1978)CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Hawking S.W.: Zeta function regularization of path integrals in curved space-time. Commun. Math. Phys. 55, 133 (1977)CrossRefADSzbMATHMathSciNetGoogle Scholar
  20. 20.
    Milton K.A.: The Casimir effect: physical manifestations of zero-point. World Scientific, River Edge (2001)CrossRefGoogle Scholar
  21. 21.
    Alonso A., Simon B.: The Birman–Kreĭn–Vishik theory of selfadjoint extensions of semibounded operators. J. Oper. Theory 4(2), 251–270 (1980)Google Scholar
  22. 22.
    Ashbaugh M.S., Gesztesy F., Mitrea M., Teschl G.: Spectral theory for perturbed krein laplacians in nonsmooth domains. Adv. Math. 223(4), 1372–1467 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Ashbaugh, M.S., Gesztesy, F., Mitrea, M., Shterenberg, R., Teschl, G.: A survey on the Krein–von Neumann extension, the corresponding abstract buckling problem, and Weyl-type spectral asymptotics for perturbed Krein Laplacians in nonsmooth domains. ArXiv e-prints (2012)Google Scholar
  24. 24.
    Kirsten K., McKane A.J.: Functional determinants by contour integration methods. Ann. Phys. 308, 502–527 (2003)CrossRefADSzbMATHMathSciNetGoogle Scholar
  25. 25.
    Seeley R.T.: Complex powers of an elliptic operator, singular integrals, Chicago 1966. Proc. Symp. Pure Math. 10, 288–307 (1968)CrossRefGoogle Scholar
  26. 26.
    Bordag M., Munoz-Castaneda J.M.: Quantum vacuum interaction between two sine-Gordon kinks. J. Phys. A 45, 374012 (2012)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Mateos Guilarte J., Munoz-Castaneda J.M.: Double-delta potentials: one dimensional scattering. The Casimir effect and kink fluctuations. Int. J. Theor. Phys. 50, 2227–2241 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Munoz-Castaneda, J.M., Mateos Guilarte, J., Moreno Mosquera, A.: Quantum vacuum energies and Casimir forces between partially transparent δ-function plates. Phys. Rev. D87(10), 105020 (2013)Google Scholar
  29. 29.
    Romeo A., Saharian A.A.: Vacuum densities and zero point energy for fields obeying Robin conditions on cylindrical surfaces. Phys. Rev. D 63, 105019 (2001)CrossRefADSGoogle Scholar
  30. 30.
    Asorey M., Garcia-Alvarez D., Munoz-Castaneda J.M.: Casimir effect and global theory of boundary conditions. J. Phys. A 39, 6127–6136 (2006)CrossRefADSzbMATHMathSciNetGoogle Scholar
  31. 31.
    Asorey M., Munoz-Castaneda J.M.: Vacuum boundary effects. J. Phys. A 41, 304004 (2008)CrossRefMathSciNetGoogle Scholar
  32. 32.
    Dowker J.S.: Robin conditions on the Euclidean ball. Class. Quantum Gravity 13, 585–610 (1996)CrossRefADSzbMATHMathSciNetGoogle Scholar
  33. 33.
    Stephen, A.: Fulling. Local spectral density and vacuum energy near a quantum graph vertex (2005). arXiv:math/0508335
  34. 34.
    Gradshteyn I.S., Ryzhik I.M.: Table of integrals, series, and products. Academic Press, New York (1965)Google Scholar
  35. 35.
    Bordag M., Elizalde E., Kirsten K.: Heat kernel coefficients of the Laplace operator on the D-dimensional ball. J. Math. Phys. 37, 895–916 (1996)CrossRefADSzbMATHMathSciNetGoogle Scholar
  36. 36.
    Bordag M., Geyer B., Kirsten K., Elizalde E.: Zeta function determinant of the Laplace operator on the D-dimensional ball. Commun. Math. Phys. 179, 215–234 (1996)CrossRefADSzbMATHMathSciNetGoogle Scholar
  37. 37.
    Bordag M., Kirsten K., Dowker J.S.: Heat kernels and functional determinants on the generalized cone. Commun. Math. Phys. 182, 371–394 (1996)CrossRefADSzbMATHMathSciNetGoogle Scholar
  38. 38.
    Jeffres T.D., Kirsten K., Lu T.: Zeta function on surfaces of revolution. J. Phys. A 45(34), 345201 (2012)CrossRefMathSciNetGoogle Scholar
  39. 39.
    Kirsten K., McKane A.J.: Functional determinants for general Sturm–Liouville problems. J. Phys. A 37, 4649–4670 (2004)CrossRefADSzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Jose M. Muñoz-Castañeda
    • 1
    Email author
  • Klaus Kirsten
    • 2
  • Michael Bordag
    • 1
  1. 1.Institut für Theoretische PhysikUniversität LeipzigLeipzigGermany
  2. 2.GCAP-CASPER Department of MathematicsBaylor UniversityWacoUSA

Personalised recommendations