Advertisement

Letters in Mathematical Physics

, Volume 104, Issue 8, pp 1019–1043 | Cite as

Q-Operator and Fusion Relations for U q (C (2)(2))

  • Ivan Chi-Ho IpEmail author
  • Anton M. Zeitlin
Article

Abstract

The construction of the Q-operator for twisted affine superalgebra U q (C (2)(2)) is given. It is shown that the corresponding prefundamental representations give rise to evaluation modules some of which do not have a classical limit, which nevertheless appear to be a necessary part of fusion relations.

Mathematics Subject Classification (2010)

Primary 17B37 81R50 

Keywords

Q-operator integrable model fusion relations twisted affine superalgebra R-matrix 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baxter R.J.: Partition function of the eight-vertex lattice model. Ann. Phys. 70, 193–228 (1971)ADSCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bazhanov V.V., Hibberd A.N., Khoroshkin S.M.: Integrable structure of W 3 conformal field theory. Quantum Boussinesq theory and boundary affine Toda theory. Nucl. Phys. B 622, 475–547 (2002)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Bazhanov V.V., Lukyanov S.L., Zamolodchikov A.B.: Integrable structure of conformal field theory. II. Q-operator and DDV equation. Commun. Math. Phys. 190, 247–278 (1997)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bazhanov V.V., Lukyanov S.L., Zamolodchikov A.B.: Integrable structure of conformal field theory. III. The Yang–Baxter relation. Commun. Math. Phys. 200, 297–324 (1999)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Bazhanov V.V., Tsuboi Z.: Baxter’s Q-operators for supersymmetric spin chains. Nucl. Phys. B 805, 451–516 (2008)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Frenkel, E., Hernandez, D.: Baxter’s relations and spectra of quantum integrable models. arXiv:1308.3444
  7. 7.
    Frenkel, E., Reshetikhin, N.: The q-characters of representations of quantum affine algebras and deformations of W-algebras. Contemp. Math. 248, 163–206 (1999)Google Scholar
  8. 8.
    Frappat, L., Sciarrino, A., Sorba, P.: Dictionary on Lie Algebras and Superalgebras. Academic Press, San Diego (2000)Google Scholar
  9. 9.
    Hernandez D., Jimbo M.: Asymptotic representations and Drinfeld rational fractions. Compos. Math. 148, 1593–1623 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Ip, I.C.-H., Zeitlin, A.M.: Supersymmetry and the modular double. Contemp. Math. (2014, in press)Google Scholar
  11. 11.
    Khoroshkin S.M., Tolstoy V.N.: Universal R-matrix for quantized (super)algebras. Commun. Math. Phys. 141, 599–617 (1991)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Khoroshkin S.M., Lukierski J., Tolstoy V.N.: Quantum affine (super)algebras U q(A 1(1)) and U q(C(2)(2)). Commun. Math. Phys. 220, 537–560 (2001)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Kojima T.: The Baxter’s Q operator for W algebra W N. J. Phys. A 41, 355206 (2008)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Kulish P., Reshetikhin N.: Universal R-matrix of the quantum superalgebra \({\mathfrak{osp}(2|1)}\). Lett. Math. Phys. 18, 143–149 (1989)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Kulish P.P., Zeitlin A.M.: Superconformal field theory and SUSY N = 1 KdV hierarchy I: vertex operators and Yang–Baxter equation. Phys. Lett. B 597, 229–236 (2004)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Kulish P.P., Zeitlin A.M.: Superconformal field theory and SUSY N = 1 KdV hierarchy II: the Q-operator. Nucl. Phys. B 709, 578–591 (2005)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Tsuboi, Z.: Asymptotic representations and q-oscillator solutions of the graded Yang–Baxter equation related to Baxter Q-operators. arXiv:1205.1471

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Kavli Institute for the Physics and Mathematics of the Universe (WPI)University of TokyoKashiwaJapan
  2. 2.Department of MathematicsColumbia UniversityNew YorkUSA
  3. 3.Max Planck Institute for MathematicsBonnGermany
  4. 4.IPME RASSt. PetersburgRussia

Personalised recommendations