Time-Ordering and a Generalized Magnus Expansion
- 217 Downloads
- 6 Citations
Abstract
Both the classical time-ordering and the Magnus expansion are well known in the context of linear initial value problems. Motivated by the noncommutativity between time-ordering and time derivation, and related problems raised recently in statistical physics, we introduce a generalization of the Magnus expansion. Whereas the classical expansion computes the logarithm of the evolution operator of a linear differential equation, our generalization addresses the same problem, including, however, directly a non-trivial initial condition. As a by-product we recover a variant of the time-ordering operation, known as \({\mathsf{T}^\ast}\)-ordering. Eventually, placing our results in the general context of Rota–Baxter algebras permits us to present them in a more natural algebraic setting. It encompasses, for example, the case where one considers linear difference equations instead of linear differential equations.
Mathematics Subject Classification (2010)
16R60 34L99Keywords
\({\mathsf{T}}\)-ordered products Magnus expansion Rota–Baxter relation Atkinson recursionPreview
Unable to display preview. Download preview PDF.
References
- 1.Aczél, J.: Lectures on functional equations and their applications. In: Mathematics in Science and Engineering, vol. 19, Academic Press, Dublin (1966)Google Scholar
- 2.Aczél, J., Dhombres, J.: Functional Equations in Several Variables: With Applications to Mathematics, Information Theory and to the Natural and Social Sciences, Encyclopedia of Mathematics and its Applications, vol. 31, Cambridge University Press, Cambridge (1989)Google Scholar
- 3.Atkinson F.V.: Some aspects of Baxter’s functional equation. J. Math. Anal. Appl. 7, 1 (1963)MathSciNetzbMATHCrossRefGoogle Scholar
- 4.Bachmann S., Graf G.M., Lesovik G.B.: Time ordering and counting statistics. J. Stat. Phys. 138, 333 (2010)MathSciNetADSzbMATHCrossRefGoogle Scholar
- 5.Baxter G.: An analytic problem whose solution follows from a simple algebraic identity. Pac. J. Math. 10, 731 (1960)MathSciNetzbMATHCrossRefGoogle Scholar
- 6.Blanes S., Casas F., Oteo J.A., Ros J.: Magnus expansion: mathematical study and physical applications. Phys. Rep. 470, 151 (2009)MathSciNetADSCrossRefGoogle Scholar
- 7.Cartier P.: On the structure of free Baxter algebras. Adv. Math. 9, 253 (1972)MathSciNetzbMATHCrossRefGoogle Scholar
- 8.Chapoton, F., Patras, F.: Enveloping algebras of preLie algebras, Solomon idempotents and the Magnus formula (2012, preprint). arXiv:1201.2159v1 [math.QA]Google Scholar
- 9.Connes A., Kreimer D.: Renormalization in quantum field theory and the Riemann–Hilbert problem I: The Hopf algebra structure of graphs and the main theorem. Commun. Math. Phys. 210, 249 (2000)MathSciNetADSzbMATHCrossRefGoogle Scholar
- 10.Ebrahimi-Fard K., Gracia-Bondía J., Patras F.: Rota–Baxter algebras and new combinatorial identities. Lett. Math. Phys. 81, 61 (2007)MathSciNetADSzbMATHCrossRefGoogle Scholar
- 11.Ebrahimi-Fard K., Manchon D.: The combinatorics of Bogoliubov’s recursion in renormalisation. in ‘Renormalization and Galois theories’. IRMA Lect. Math. Theor. Phys. 15, 179 (2009)MathSciNetGoogle Scholar
- 12.Ebrahimi-Fard K., Manchon D.: A Magnus- and Fer-type formula in dendriform algebras. Found. Comput. Math. 9, 295 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
- 13.Ebrahimi-Fard K., Manchon D.: Dendriform equations. J. Algebra 322, 4053 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
- 14.Ebrahimi-Fard K., Manchon D., Patras F.: A noncommutative Bohnenblust–Spitzer identity for Rota–Baxter algebras solves Bogoliubov’s recursion. J. Noncommut. Geom. 3, 181 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
- 15.Fried H.: Green’s Functions and Ordered Exponentials. Cambridge University Press, Cambridge (2005)Google Scholar
- 16.Gelfand I.M., Krob D., Lascoux A., Leclerc B., Retakh V., Thibon J.Y.: Noncommutative symmetric functions. Adv. Math. 112, 218 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
- 17.Iserles A., Munthe-Kaas H.Z., Nørsett S.P., Zanna A.: Lie-group methods. Acta Numerica 9, 215 (2000)CrossRefGoogle Scholar
- 18.Kingman J.F.C.: Spitzer’s identity and its use in probability theory. J. Lond. Math. Soc. 37, 309 (1962)MathSciNetzbMATHCrossRefGoogle Scholar
- 19.Magnus W.: On the exponential solution of differential equations for a linear operator. Commun. Pure Appl. Math. 7, 649 (1954)MathSciNetzbMATHCrossRefGoogle Scholar
- 20.Mielnik B., Plebański J.: Combinatorial approach to Baker–Campbell–Hausdorff exponents. Ann. Inst. Henri Poincaré A XII, 215 (1970)Google Scholar
- 21.Murua A.: The Hopf algebra of rooted trees, free Lie algebras, and Lie series. Found. Comput. Math. 6, 387 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
- 22.Rota G.C.: Baxter algebras and combinatorial identities I, II. Bull. Am. Math. Soc. 75, 325 (1969)MathSciNetzbMATHCrossRefGoogle Scholar
- 23.Rota G.C.: Ten mathematics problems I will never solve. DMV Mitteilungen 2, 45 (1998)MathSciNetGoogle Scholar
- 24.Rota G.C., Smith D.A.: Fluctuation theory and Baxter algebras. Istituto Nazionale di Alta Matematica IX, 179 (1972)MathSciNetGoogle Scholar
- 25.Spitzer F.: A combinatorial lemma and its application to probability theory. Trans. Am. Math. Soc. 82, 323 (1956)MathSciNetzbMATHCrossRefGoogle Scholar
- 26.Strichartz R.S.: The Campbell–Baker–Hausdorff–Dynkin formula and solutions of differential equations. J. Funct. Anal. 72, 320 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
- 27.Talkner P., Lutz E., Hanggi P.: Fluctuation theorems: work is not an observable. Phys. Rev. E (Rapid Communication) 75, 050102 (2007)ADSCrossRefGoogle Scholar
- 28.Vogel W.: Die kombinatorische Lösung einer Operator-Gleichung. Z. Wahrscheinlichkeitstheorie 2, 122 (1963)zbMATHCrossRefGoogle Scholar
- 29.Wilcox R.M.: Exponential operators and parameter differentiation in quantum physics. J. Math. Phys. 8, 962 (1967)MathSciNetADSzbMATHCrossRefGoogle Scholar