Letters in Mathematical Physics

, Volume 103, Issue 1, pp 59–77

The Remodeling Conjecture and the Faber–Pandharipande Formula

  • Vincent Bouchard
  • Andrei Catuneanu
  • Olivier Marchal
  • Piotr Sułkowski
Article

DOI: 10.1007/s11005-012-0588-z

Cite this article as:
Bouchard, V., Catuneanu, A., Marchal, O. et al. Lett Math Phys (2013) 103: 59. doi:10.1007/s11005-012-0588-z

Abstract

In this note, we prove that the free energies Fg constructed from the Eynard–Orantin topological recursion applied to the curve mirror to \({\mathbb{C}^3}\) reproduce the Faber–Pandharipande formula for genus g Gromov–Witten invariants of \({\mathbb{C}^3}\) . This completes the proof of the remodeling conjecture for \({\mathbb{C}^3}\) .

Mathematics Subject Classification (2010)

14N35 14J33 14J81 

Keywords

mirror symmetry Gromov–Witten invariants Eynard–Orantin topological recursion remodeling conjecture Hodge integrals matrix models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Vincent Bouchard
    • 1
  • Andrei Catuneanu
    • 1
  • Olivier Marchal
    • 1
  • Piotr Sułkowski
    • 2
    • 3
  1. 1.Department of Mathematical and Statistical SciencesUniversity of AlbertaEdmontonCanada
  2. 2.California Institute of TechnologyPasadenaUSA
  3. 3.Faculty of PhysicsUniversity of WarsawWarsawPoland

Personalised recommendations