Letters in Mathematical Physics

, Volume 103, Issue 1, pp 79–112 | Cite as

Combinatorics and Formal Geometry of the Maurer–Cartan Equation

Article

Abstract

We give a general treatment of the Maurer–Cartan equation in homotopy algebras and describe the operads and formal differential geometric objects governing the corresponding algebraic structures. We show that the notion of Maurer–Cartan twisting is encoded in certain automorphisms of these universal objects.

Mathematics Subject Classification (1991)

18D50 17B55 17B66 16E45 

Keywords

differential graded Lie algebra Maurer–Cartan element A-infinity algebra L-infinity algebra operad twisting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Block, J.: Duality and equivalence of module categories in noncommutative geometry. A celebration of the mathematical legacy of Raoul Bott, pp. 311–339, CRM Proc. Lecture Notes, vol. 50. American Mathematical Society, Providence (2010)Google Scholar
  2. 2.
    Chuang J., Lazarev A.: L-infinity maps and twistings. Homol. Homotopy Appl. 13(2), 175–195 (2011) arXiv:0912.1215MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Dolgushev, V., Rogers, C.: Notes on Algebraic Operads, Graph Complexes, and Willwacher’s Construction. arXiv:math/0404003v4Google Scholar
  4. 4.
    Getzler E.: Lie theory for nilpotent L-infinity algebras. Ann. Math. 170(1), 271–301 (2009) arXiv:math/0404003v4MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Getzler, E., Kapranov, M.M.: Cyclic operads and cyclic homology. Geometry, topology, & physics, pp. 167–201. In: Conf. Proc. Lecture Notes Geom. Topology, IV. Int. Press, Cambridge (1995)Google Scholar
  6. 6.
    Getzler E., Kapranov M.M.: Modular operads. Compos. Math. 110(1), 65–126 (1998)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Ginzburg V., Kapranov M.: Koszul duality for operads. Duke Math. J. 76(1), 203–272 (1994)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Hamilton, A., Lazarev, A.: Homotopy algebras and noncommutative geometry. arXiv: math/0410621Google Scholar
  9. 9.
    Kontsevich, M.: Formal noncommutative symplectic geometry. In: The Gelfand Mathematical Seminars, 1990–1992, pp. 173–187. Birkhäuser, Boston (1993)Google Scholar
  10. 10.
    Lefschetz, S.: Algebraic Topology. AMS, Colloquium Pbns. Series, vol. 27 (1942)Google Scholar
  11. 11.
    Merkulov S.: An L -algebra of an unobstructed deformation functor. Int. Math. Res. Notices 3, 147–164 (2000)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Reutenauer, C.: Free Lie algebras. In: London Mathematical Society Monographs. New Series, vol. 7. Oxford Science Publications. The Clarendon Press, New York (1993)Google Scholar
  13. 13.
    Stasheff, J.: Deformation theory and the Batalin-Vilkovisky master equation. Deformation theory and symplectic geometry (Ascona, 1996), pp. 271–284. In: Math. Phys. Stud., vol. 20. Kluwer, Dordrecht (1997)Google Scholar
  14. 14.
    Willwacher, T.: M. Kontsevich’s graph complex and the Grothendieck-Teichmueller Lie algebra. arxiv:1009.1654.Google Scholar
  15. 15.
    Willwacher, T.: A Note on Br-infinity and KS-infinity Formality. arXiv:1109.3520Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Centre for Mathematical ScienceCity University LondonLondonUK
  2. 2.Department of MathematicsUniversity of LeicesterLeicesterUK

Personalised recommendations