Letters in Mathematical Physics

, Volume 102, Issue 2, pp 223–244

Integration of Lie 2-Algebras and Their Morphisms

Open Access
Article

Abstract

Given a strict Lie 2-algebra, we can integrate it to a strict Lie 2-group by integrating the corresponding Lie algebra crossed module. On the other hand, the integration procedure of Getzler and Henriques will also produce a 2-group. In this paper, we show that these two integration results are Morita equivalent. As an application, we integrate a non-strict morphism between Lie algebra crossed modules to a generalized morphism between their corresponding Lie group crossed modules.

Mathematics Subject Classification (2010)

Primary 17B55 Secondary 18B40 18D10 

Keywords

L-algebras L-morphisms crossed modules Lie 2-groups Lie 2-algebras integration 

References

  1. 1.
    Alekseevsky, D., Michor, P.W., Ruppert, W.: Extensions of Lie algebras, arXiv:math.DG/0005042Google Scholar
  2. 2.
    Abad C.A., Crainic M.: Representations up to homotopy of Lie algebroids. J. Reine Angew. Math. 663, 91–126 (2012)MathSciNetMATHGoogle Scholar
  3. 3.
    Baez J., Lauda A.: Higher-dimensional algebra 5: 2-groups. Theory Appl. Categ. 12, 423–491 (2004)MathSciNetMATHGoogle Scholar
  4. 4.
    Baez J., Crans A.S.: Higher-dimensional algebra 6: Lie 2-algebras. Theory Appl. Categ. 12, 492–538 (2004)MathSciNetMATHGoogle Scholar
  5. 5.
    Baez, J.C., Schreiber, U., et al.: Higher Gauge Theory. In: Davydov, A. (ed.) Categories in Algebra, Geometry and Mathematical Physics. Contemporary Mathematics, vol. 431, pp. 7-30. AMS Providence (2007)Google Scholar
  6. 6.
    Chen, S., Sheng, Y., Zheng, Z.: Non-abelian Extensions of Lie 2-algebras, arXiv:1203.0367. Sci. China. Math. (2012). doi:10.1007/s11425-012-4398-7
  7. 7.
    Brahic O.: Extensions of Lie brackets. J. Geom. Phys. 60(2), 352–374 (2010)MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    Brahic O., Zhu C.: Lie algebroid fibrations. Adv. Math. 226(4), 3105–3135 (2011)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Crainic M., Fernandes R.L.: Integrability of Lie brackets. Ann. Math. (2) 157(2), 575–620 (2003)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Duistermaat J., Kolk J.: Lie Groups, Universitext. Springer, New York (2000)CrossRefGoogle Scholar
  11. 11.
    Fiorenza, D., Schreiber, U., Stasheff, J.: Cech cocycles for differential characteristic classes—an infinity-Lie theoretic construction, arXiv:1011.4735v2Google Scholar
  12. 12.
    Forrester-Barker, M.: Group objects and internal categories, math.CT/0212065Google Scholar
  13. 13.
    Getzler E.: Lie theory for nilpotent L -algebras. Ann. Math. (2) 170(1), 271–301 (2009)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Henriques A.: Integrating L -algebras. Compos. Math. 144(4), 1017–1045 (2008)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Inassaridze N., Khmaladze E., Ladra M.: Non-abelian cohomology and extensions of Lie algebras. J. Lie Theory 18, 413–432 (2008)MathSciNetMATHGoogle Scholar
  16. 16.
    Lada T., Markl M.: Strongly homotopy Lie algebras. Commun. Algebra 23(6), 2147–2161 (1995)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Li-Bland, D., Ševera, P.: Integration of exact courant algebroids, arXiv:1101.3996Google Scholar
  18. 18.
    Liu Z.-J., Weinstein A., Xu P.: Manin triples for Lie bialgebroids. J. Differ. Geom. 45, 547–574 (1997)MathSciNetGoogle Scholar
  19. 19.
    Mehta R.A., Tang X.: From double Lie groupoids to local Lie 2-groupoids. Bull. Braz. Math. Soc. 42(4), 651–681 (2011)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Noohi, B.: Integrating morphisms of Lie 2-algebras, arXiv:0910.1818Google Scholar
  21. 21.
    Severa P.: Poisson actions up to homotopy and their quantization. Lett. Math. Phys. 77(2), 199–208 (2006)MathSciNetADSMATHCrossRefGoogle Scholar
  22. 22.
    Sheng Y., Zhu C.: Semidirect products of representations up to homotopy. Pac. J. Math. 249(1), 211–236 (2011)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Sheng Y., Zhu C.: Integration of semidirect product Lie 2-algebras. Int. J. Geom. Methods Mod. Phys. 9(5), 1250043 (2012)CrossRefGoogle Scholar
  24. 24.
    Sheng, Y., Zhu, C.: Higher extensions of Lie algebroids, arXiv:1103.5920Google Scholar
  25. 25.
    Stasheff, J.: Differential graded Lie algebras, quasi-Hopf algebras and higher homotopy algebras. In: Quantum groups (Leningrad, 1990). Lecture Notes in Mathematics, vol. 1510, pp. 120–137. Springer, Berlin (1992)Google Scholar
  26. 26.
    Stevenson, D.: Schreier theory for Lie 2-algebras. Unpublished workGoogle Scholar
  27. 27.
    Tseng H., Zhu C.: Integrating Lie algebroids via stacks. Compos. Math. 142(1), 251–270 (2006)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Wockel, C., Zhu, C.: Integrating central extensions of Lie algebras via Lie 2-groups, arXiv:1204.5583Google Scholar
  29. 29.
    Zhu, C.: Lie II theorem for Lie algebroids via higher groupoids, arXiv:math/0701024Google Scholar
  30. 30.
    Zhu C.: n-Groupoids and Stacky Groupoids. Int. Math. Res. Not. IMRN 21, 4087–4141 (2009)Google Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.Department of MathematicsJilin UniversityChangchunChina
  2. 2.Mathematischen Institut and Courant Research Centre “Higher Order Structures”University of GöttingenGöttingenGermany

Personalised recommendations