Letters in Mathematical Physics

, Volume 103, Issue 1, pp 37–58 | Cite as

Deformations of Fermionic Quantum Field Theories and Integrable Models



Considering the model of a scalar massive Fermion, it is shown that by means of deformation techniques it is possible to obtain all integrable quantum field theoretic models on two-dimensional Minkowski space which have factorizing S-matrices corresponding to two-particle scattering functions S2 satisfying S2(0) = −1. Among these models there is for example the Sinh-Gordon model. Our analysis provides a complement to recent developments regarding deformations of quantum field theories. The deformed model is investigated also in higher dimensions. In particular, locality and covariance properties are analyzed.

Mathematics Subject Classification (2010)

81T05 81T10 81T40 81U99 


quantum field theory integrable models deformation scalar massive fermions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdalla E., Abdalla C., Rothe K.D.: Non-perturbative methods in 2-dimensional quantum field theory. World Scientific, Singapore (1991)CrossRefGoogle Scholar
  2. 2.
    Bratteli O., Robinson W.: Operator Algebras and Quantum Statistical Mechanics 2. Springer, Heidelberg (1997)MATHGoogle Scholar
  3. 3.
    Buchholz D., Dreyer O., Florig M., Summers S.: Geometric modular action and spacetime symmetry groups. Rev. Math. Phys. 12, 475–560 (2000)MathSciNetMATHGoogle Scholar
  4. 4.
    Buchholz D., Lechner G.: Modular nuclearity and localization. Ann. H. Poincaré 5, 1065–1080 (2004)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Buchholz D., Summers S.: String- and brane-localized causal fields in a strongly nonlocal model. J. Phys. A Math. Theor. 40, 2147–2163 (2007)MathSciNetADSMATHCrossRefGoogle Scholar
  6. 6.
    Buchholz D., Summers S.: Warped convolutions: a novel tool in the construction of quantum field theories. In: Seiler, E., Sibold, K. (eds) Quantum Field Theory and Beyond: Essays in Honor of Wolfhart Zimmermann, pp. 107–121. World Scientific, Singapore (2008)CrossRefGoogle Scholar
  7. 7.
    Buchholz D., Lechner G., Summers S.: Warped convolutions, Rieffel deformations and the construction of quantum field theories. Commun. Math. Phys. 304, 95–123 (2011)MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    Dappiaggi C., Lechner G., Morfa-Morales E.: Deformations of quantum field theories on spacetimes with killing vector fields. Commun. Math. Phys. 305, 99–130 (2011)MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    Faddeev, L.D.: Quantum completely integrable models in field theory. In: Mathematical Physics Reviews, vol. 1, pp. 107–155 (1984)Google Scholar
  10. 10.
    Grosse H., Lechner G.: Wedge-local quantum fields and noncommutative Minkowski space. JHEP 11, 012 (2007)MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    Grosse H., Lechner G.: Noncommutative deformations of Wightman quantum field theories. JHEP 09, 131 (2008)MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    Lechner G.: Polarization-free quantum fields and interaction. Lett. Math. Phys. 64, 137–154 (2003)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Lechner G.: On the existence of local observables in theories with a factorizing S-matrix. J. Phys. A Math. Gen. 38, 3045–3056 (2005)MathSciNetADSMATHCrossRefGoogle Scholar
  14. 14.
    Lechner, G.: On the construction of quantum field theories with factorizing S-matrices, PhD thesis, University of Göttingen (2006)Google Scholar
  15. 15.
    Lechner G.: Construction of quantum field theories with factorizing S-matrices. Commun. Math. Phys. 277, 821–860 (2008)MathSciNetADSMATHCrossRefGoogle Scholar
  16. 16.
    Lechner, G.: Deformations of quantum field theories and integrable models, no. arXiv: 1104.1948 (2011)Google Scholar
  17. 17.
    Iagolnitzer D.: Scattering in quantum field theories. Princeton University Press, Princeton (1993)MATHGoogle Scholar
  18. 18.
    Jost R.: General Theory of Quantized Fields. Mathematical Society, Providence (1965)MATHGoogle Scholar
  19. 19.
    Rudin W.: Real and complex analysis, 3rd edn. McGraw-Hill, New York (1987)Google Scholar
  20. 20.
    Reed M., Simon B.: Methods of Modern Mathematical Physics II—Fourier Analysis. Academic Press, Dublin (1975)MATHGoogle Scholar
  21. 21.
    Schroer B.: Modular localization and the bootstrap-formfactor program. Nucl. Phys. B499, 547–568 (1997)MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    Smirnov F.A.: Form Factors in Completely Integrable Models of Quantum Field Theory. World Scientific, Singapore (1992)MATHCrossRefGoogle Scholar
  23. 23.
    Streater R.F., Wightman A.S.: PCT, Spin and Statistics, and All That. Benjamin-Cummings, Reading (1964)MATHGoogle Scholar
  24. 24.
    Zamolodchikov A.B., Zamolodchikov A.B.: Factorized S-matrices in two dimensions as the exact solutions of certain relativistic quantum field models. Ann. Phys. 120, 253–291 (1979)MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer 2012

Authors and Affiliations

  1. 1.Faculty of PhysicsUniversity of ViennaViennaAustria

Personalised recommendations