Letters in Mathematical Physics

, Volume 101, Issue 3, pp 341–354 | Cite as

Haag Duality and the Distal Split Property for Cones in the Toric Code

Open Access
Article

Abstract

We prove that Haag duality holds for cones in the toric code model. That is, for a cone Λ, the algebra \({\mathcal{R}_{\Lambda}}\) of observables localized in Λ and the algebra \({\mathcal{R}_{\Lambda^c}}\) of observables localized in the complement Λ c generate each other’s commutant as von Neumann algebras. Moreover, we show that the distal split property holds: if \({\Lambda_1 \subset \Lambda_2}\) are two cones whose boundaries are well separated, there is a Type I factor \({\mathcal{N}}\) such that \({\mathcal{R}_{\Lambda_1} \subset \mathcal{N} \subset \mathcal{R}_{\Lambda_2}}\) . We demonstrate this by explicitly constructing \({\mathcal{N}}\) .

Mathematics Subject Classification (2010)

81R15 (46L60, 81T05, 82B20) 

Keywords

Haag duality distal split property toric code 

Notes

Acknowledgments

This research is funded by the Netherlands Organisation for Scientific Research (NWO) grant no. 613.000.608. The author wishes to thank Klaas Landsman, Michael Müger and Reinhard Werner for valuable feedback on the manuscript.

Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

  1. 1.
    Alicki R., Fannes M., Horodecki M.: A statistical mechanics view on Kitaev’s proposal for quantum memories. J. Phys. A 40, 6451–6467 (2007)MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    Bisognano J.J., Wichmann E.H.: On the duality condition for quantum fields. J. Math. Phys. 17, 303–321 (1976)MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    Bratteli O., Robinson D.W.: Operator Algebras and Quantum Statistical Mechanics, vol. 1. Springer, New York (1987)Google Scholar
  4. 4.
    Buchholz D.: Product states for local algebras. Commun. Math. Phys 36, 287–304 (1974)MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    Buchholz D., Doplicher S., Longo R.: On Noether’s theorem in quantum field theory. Ann. Phys. 170, 1–17 (1986)MathSciNetADSMATHCrossRefGoogle Scholar
  6. 6.
    Buchholz D., Mack G., Todorov I.: Localized automorphisms of the U(1)-current algebra on the circle: an instructive example. In: Kastler, D. (ed.) The Algebraic Theory of Superselection Sectors (Palermo, 1989), pp. 356–378. World Scientific Publishers, River Edge (1990)Google Scholar
  7. 7.
    D’Antoni C., Longo R.: Interpolation by type I factors and the flip automorphism. J. Funct. Anal. 51, 361–371 (1983)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Doplicher S., Longo R.: Standard and split inclusions of von Neumann algebras. Invent. Math. 75, 493–536 (1984)MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    Haag R.: Local Quantum Physics: Fields, particles, algebras. Springer, Berlin (1996)MATHGoogle Scholar
  10. 10.
    Kadison, R.V., Ringrose, J.R.: Fundamentals of the theory of operator algebras. In: Elementary Theory, vol. 1. Academic Press, New York (1983)Google Scholar
  11. 11.
    Keyl M., Matsui T., Schlingemann D., Werner R.F.: Entanglement Haag-duality and type properties of infinite quantum spin chains. Rev. Math. Phys. 18, 935–970 (2006)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Kitaev A.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003)MathSciNetADSMATHCrossRefGoogle Scholar
  13. 13.
    Matsui, T.: Spectral gap, and split property in quantum spin chains. J. Math. Phys. 51, 015216, 8 (2010)Google Scholar
  14. 14.
    Naaijkens P.: Localized endomorphisms in Kitaev’s toric code on the plane. Rev. Math. Phys. 23, 347–373 (2011)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Rieffel M.A., Daele A.: The commutation theorem for tensor products of von Neumann algebras. Bull. Lond. Math. Soc. 7, 257–260 (1975)ADSMATHCrossRefGoogle Scholar
  16. 16.
    Summers S.J., Werner R.F.: Maximal violation of Bell’s inequalities is generic in quantum field theory. Commun. Math. Phys. 110, 247–259 (1987)MathSciNetADSMATHCrossRefGoogle Scholar
  17. 17.
    Takesaki M.: Theory of Operator Algebras. I. Springer, Berlin (2002)MATHGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.Institute for Mathematics, Astrophysics and Particle PhysicsRadboud University NijmegenNijmegenThe Netherlands
  2. 2.Institut für Theoretische PhysikLeibniz Universität HannoverHannoverGermany

Personalised recommendations