Advertisement

Letters in Mathematical Physics

, Volume 102, Issue 2, pp 203–222 | Cite as

Twisted Elliptic Genus for K3 and Borcherds Product

  • Tohru Eguchi
  • Kazuhiro HikamiEmail author
Article

Abstract

We discuss the relation between the elliptic genus of K3 surface and the Mathieu group M 24. We find that some of the twisted elliptic genera for K3 surface, defined for conjugacy classes of the Mathieu group M 24, can be represented in a very simple manner in terms of the η product of the corresponding conjugacy classes. It is shown that our formula is a consequence of the identity between the Borcherds product and additive lift of some Siegel modular forms.

Mathematics Subject Classification

58J26 81T40 20C34 14J28 

Keywords

elliptic genus superconformal algebra moonshine Mathieu group Jacobi form mock theta function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aoki H., Ibukiyama T.: Simple graded rings of Siegel modular forms, differential operators and Borcherds products. Int. J. Math. 16, 249–279 (2005). doi: 10.1142/S0129167X05002837 MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Borcherds R.E.: Automorphic forms on \({O_{s+2,2}(\mathbb{R})}\) and infinite products. Invent. Math. 120, 161–213 (1995). doi: 10.1007/BF01241126 MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 3.
    Bruinier J.H., van der Geer G., Harder G., Zagier D.: The 1-2-3 of Modular Forms. Springer, Berlin (2008)zbMATHGoogle Scholar
  4. 4.
    Chaudhuri S., Hockney G., Lykken J.D.: Maximally supersymmetric string theories in D < 10. Phys. Rev. Lett. 75, 2264–2267 (1995). doi: 10.1103/PhysRevLett.75.2264. hep-th/9505054MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. 5.
    Cheng M.C.N.: K3 surfaces, \({\mathcal{N}=4}\) dyons, and the Mathieu group M 24. Commun. Number Theory Phys. 4, 623–657 (2010) arXiv:1005.5415 [hep-th]MathSciNetzbMATHGoogle Scholar
  6. 6.
    Cléry F., Gritsenko V.: Siegel modular forms of genus 2 with the simplest divisor. Proc. London Math. Soc. 102(3), 1024–1052 (2011). doi: 10.1112/plms/pdq036. arXiv: 0812.3962 [math.NT]zbMATHCrossRefGoogle Scholar
  7. 7.
    Conway J.H., Curtis R.T., Wilson R.A., Norton S.P., Parker R.A.: ATLAS of Finite Groups. Clarendon Press, Oxford (1985)zbMATHGoogle Scholar
  8. 8.
    Conway J.H., Norton S.P.: Monstrous moonshine. Bull. London Math. Soc. 11, 308–339 (1979). doi: 10.1112/blms/11.3.308 MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Dabholkar A., Nampuri S.: Spectrum of dyons and black holes in CHL orbifolds using Borcherds lift. J. High Energy Phys. 2007:11, 077 (2007). doi: 10.1088/1126-6708/2007/11/077. hep-th/0603066MathSciNetCrossRefGoogle Scholar
  10. 10.
    David, J.R., Jatkar, P.D., Sen, A.: Product representation of dyon partition function in CHL model. J. High Energy Phys. 2006:06, 064 (2006), 31 pages. doi: 10.1088/1126-6708/2006/06/064. hep-th/0602254Google Scholar
  11. 11.
    Dijkgraaf R., Moore G., Verlinde E., Verlinde H.: Elliptic genera of symmetric products and second quantized strings. Commun. Math. Phys. 185, 197–209 (1997). doi: 10.1007/s002200050087. hep-th/9608096MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. 12.
    Dijkgraaf R., Verlinde H., Verlinde E.: Counting dyons in N = 4 string theory. Nucl. Phys. B 484, 543–561 (1997). doi: 10.1016/S0550-3213(96)00640-2. hep-th/9607026MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. 13.
    Dummit, D., Kisilevsky, H., McKay, J: Multiplicative products of η-functions. In: McKay, J. (ed.) Finite Groups—Coming of Age. Contemp. Math., vol. 45, pp. 89–98. Amer. Math. Soc., Providence (1985)Google Scholar
  14. 14.
    Eguchi T., Hikami K.: Superconformal algebras and mock theta functions. J. Phys. A Math. Theor. 42, 304010 (2009). doi: 10.1088/1751-8113/42/30/304010. arXiv:0812.1151 [math-ph]MathSciNetCrossRefGoogle Scholar
  15. 15.
    Eguchi T., Hikami K.: Superconformal algebras and mock theta functions 2. Rademacher expansion for K3 surface. Commun. Number Theory Phys. 3, 531–554 (2009) arXiv:0904.0911 [math-ph]MathSciNetzbMATHGoogle Scholar
  16. 16.
    Eguchi T., Hikami K.: \({\mathcal{N}=4}\) superconformal algebra and the entropy of hyperKähler manifolds. J. High Energy Phys. 2010:02, 019 (2010). doi: 10.1007/JHEP02(2010)019. arXiv:0909.0410 [hep-th]MathSciNetCrossRefGoogle Scholar
  17. 17.
    Eguchi T., Hikami K.: Note on twisted elliptic genus of K3 surface. Phys. Lett. B 694, 446–455 (2011). doi: 10.1016/j.physletb.2010.10.017. arXiv:1008.4924 [hep-th]MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    Eguchi T., Ooguri H., Tachikawa Y.: Notes on the K3 surface and the Mathieu group M 24. Exp. Math. 20, 91–96 (2011). doi: 10.1080/10586458.2011.544585. arXiv:1004.0956 [hep-th]MathSciNetCrossRefGoogle Scholar
  19. 19.
    Eguchi T., Ooguri H., Taormina A., Yang S.-K.: Superconformal algebras and string compactification on manifolds with SU(n) holonomy. Nucl. Phys. B 315, 193–221 (1989). doi: 10.1016/0550-3213(89)90454-9 MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    Eguchi T., Taormina A.: Unitary representations of the N = 4 superconformal algebra. Phys. Lett. B 196, 75–81 (1986). doi: 10.1016/0370-2693(87)91679-0 MathSciNetADSGoogle Scholar
  21. 21.
    Eguchi T., Taormina A.: Character formulas for the N = 4 superconformal algebra. Phys. Lett. B 200, 315–322 (1988). doi: 10.1016/0370-2693(88)90778-2 MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    Eichler M., Zagier D.: The Theory of Jacobi Forms.In: Progress in Mathematics, vol. 55. Birkhäuser, Boston (1985)Google Scholar
  23. 23.
    Gaberdiel M.R., Hohenegger S., Volpato R.: Mathieu twining characters for K3. J. High Energy Phys. 2010:09, 058 (2010). doi: 10.1007/JHEP09(2010)058. arXiv:1006.0221 [hep-th]MathSciNetCrossRefGoogle Scholar
  24. 24.
    Gaberdiel M.R., Hohenegger S., Volpato R.: Mathieu moonshine in the elliptic genus of K3. J. High Energy Phys. 2010:10, 062 (2010). doi: 10.1007/JHEP10(2010)062. arXiv:1008.3778 [math.AG]MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    Govindarajan S., Krishna K.G.: Generalized Kac–Moody algebras from CHL dyons. J. High Energy Phys. 2009, 032 (2009). doi: 10.1088/1126-6708/2009/04/032. arXiv:0807.4451 [hep-th]MathSciNetCrossRefGoogle Scholar
  26. 26.
    Gritsenko V.: Elliptic genus of Calabi–Yau manifolds and Jacobi and Siegel modular forms. Algebra i Analiz 11, 100–125 (1999) math/9906190MathSciNetGoogle Scholar
  27. 27.
    Gritsenko V.A., Nikulin V.V.: Siegel automorphic corrections of some Lorentzian Kac–Moody Lie algebras. Am. J. Math. 119, 181–224 (1997). doi: 10.1353/ajm.1997.0002. alg-geom/9506017MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Gritsenko V.A., Nikulin V.V.: Automorphic forms and Lorentzian Kac–Moody algebra 2. Int. J. Math. 9, 201–275 (1998). doi: 10.1142/S0129167X98000117. alg-geom/ 9611028MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Jatkar P.D., Sen A.: Dyon spectrum in CHL models. J. High Energy Phys. 2006:04, 018 (2006). doi: 10.1088/1126-6708/2006/04/018. hep-th/0510147MathSciNetCrossRefGoogle Scholar
  30. 30.
    Katz S., Klemm A., Vafa C.: M-theory, topological strings, and spinning black holes. Adv. Theor. Math. Phys. 3, 1445–1537 (1999) hep-th/9910181MathSciNetzbMATHGoogle Scholar
  31. 31.
    Koike M.: On McKay’s conjecture. Nagoya Math. J. 95, 85–89 (1984)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Kondo T., Tasaka T.: The theta functions of sublattices of the Leech lattice. Nagoya Math. J. 101, 151–179 (1986)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Mason, G.: M 24 and certain automorphic forms. In: McKay, J. (ed.) Finite Groups—Coming of Age, Contemp. Math., vol. 45, pp. 223–244. Amer. Math. Soc., Providence (1985)Google Scholar

Copyright information

© Springer 2012

Authors and Affiliations

  1. 1.Yukawa Institute for Theoretical PhysicsKyoto UniversityKyotoJapan
  2. 2.California Institute of TechnologyPasadenaUSA
  3. 3.Faculty of MathematicsKyushu UniversityFukuokaJapan

Personalised recommendations