Advertisement

Letters in Mathematical Physics

, Volume 99, Issue 1–3, pp 3–32 | Cite as

Review of AdS/CFT Integrability: An Overview

  • Niklas Beisert
  • Changrim Ahn
  • Luis F. Alday
  • Zoltán Bajnok
  • James M. Drummond
  • Lisa Freyhult
  • Nikolay Gromov
  • Romuald A. Janik
  • Vladimir Kazakov
  • Thomas Klose
  • Gregory P. Korchemsky
  • Charlotte Kristjansen
  • Marc Magro
  • Tristan McLoughlin
  • Joseph A. Minahan
  • Rafael I. Nepomechie
  • Adam Rej
  • Radu Roiban
  • Sakura Schäfer-Nameki
  • Christoph Sieg
  • Matthias Staudacher
  • Alessandro Torrielli
  • Arkady A. Tseytlin
  • Pedro Vieira
  • Dmytro Volin
  • Konstantinos Zoubos
Article

Abstract

This is the introductory chapter of a review collection on integrability in the context of the AdS/CFT correspondence. In the collection, we present an overview of the achievements and the status of this subject as of the year 2010.

Mathematics Subject Classification (2010)

37K15 81T13 81T30 81U15 

Keywords

gauge theory string theory duality integrability Bethe ansatz 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Maldacena J.M.: The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231 (1998) hep-th/9711200MathSciNetADSzbMATHGoogle Scholar
  2. 2.
    Gubser S.S., Klebanov I.R., Polyakov A.M.: Gauge theory correlators from non-critical string theory. Phys. Lett. B. 428, 105 (1998). doi: 10.1016/S0370-2693(98)00377-3 (hep-th/9802109)MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    Witten E.: Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253 (1998) hep-th/9802150MathSciNetzbMATHGoogle Scholar
  4. 4.
    Kovacs, S.: N=4 supersymmetric Yang-Mills theory and the AdS/SCFT correspondence. hep-th/9908171Google Scholar
  5. 5.
    Aharony O., Gubser S.S., Maldacena J.M., Ooguri H., Oz Y.: Large N field theories, string theory and gravity. Phys. Rept. 323, 183 (2000). doi: 10.1016/S0370-1573(99)00083-6 (hep-th/9905111)MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    D’Hoker, E., Freedman, D.Z.: Supersymmetric gauge theories and the AdS/CFT correspondence. hep-th/0201253Google Scholar
  7. 7.
    Maldacena, J.M.: Lectures on AdS/CFT. hep-th/0309246Google Scholar
  8. 8.
    Nastase, H.: Introduction to AdS-CFT. arxiv:0712.0689Google Scholar
  9. 9.
    Polchinski, J.: Introduction to Gauge/Gravity Duality. arxiv:1010.6134Google Scholar
  10. 10.
    Benna, M.K., Klebanov, I.R.: Gauge-String Dualities and Some Applications. arxiv: 0803.1315Google Scholar
  11. 11.
    Klebanov I.R., Maldacena J.M.: Solving quantum field theories via curved spacetimes. Phys. Today 62, 28 (2009). doi: 10.1063/1.3074260 CrossRefGoogle Scholar
  12. 12.
    ’t Hooft, G.: A planar diagram theory for strong interactions. Nucl. Phys. B. 72, 461 (1974). doi: 10.1016/0550-3213(74)90154-0
  13. 13.
    Horowitz, G.T., Polchinski, J.: Gauge/gravity duality. gr-qc/0602037Google Scholar
  14. 14.
    Kawai H., Lewellen D.C., Tye S.-H.H.: A relation between tree amplitudes of closed and open strings. Nucl. Phys. B. 269, 1 (1986). doi: 10.1016/0550-3213(86)90362-7 MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    Bern Z., Carrasco J.J.M., Johansson H.: New Relations for Gauge-Theory Ampli- tudes. Phys. Rev. D. 78, 085011 (2008). doi: 10.1103/PhysRevD.78.085011 (arxiv: 0805.3993)MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    Bern Z., Carrasco J.J.M., Johansson H.: Perturbative quantum gravity as a double copy of gauge theory. Phys. Rev. Lett. 105, 061602 (2010). doi: 10.1103/PhysRevLett.105.061602 (arxiv:1004.0476)MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    Ioffe, B.L., Fadin, V.S., Lipatov, L.N. (eds): Quantum Chromodynamics: Perturbative and Nonperturbative Aspects. Cambridge University Press, Cambridge (2010)zbMATHGoogle Scholar
  18. 18.
    Seiberg, N., Witten, E.: Monopole condensation, and confinement in \({\mathcal{N}}\) = 2 supersymmetric Yang–Mills theory. Nucl. Phys. B. 426, 19 (1994). doi: 10.1016/0550-3213(94)90124-4 (hep-th/9407087)
  19. 19.
    Seiberg, N., Witten, E.: Monopoles, duality and chiral symmetry breaking in \({\mathcal{N}}\) = 2 supersymmetric QCD. Nucl. Phys. B. 431, 484 (1994). doi: 10.1016/0550-3213(94)90214-3 (hep-th/9408099)
  20. 20.
    Nekrasov, N.A., Shatashvili, S.L.: Supersymmetric vacua and Bethe ansatz. Nucl. Phys. Proc. Suppl. 192–193, 91 (2009). doi: 10.1016/j.nuclphysbps.2009.07.047 (arxiv:0901.4744)
  21. 21.
    Nekrasov N.A., Shatashvili S.L.: Quantum integrability and supersymmetric vacua. Prog. Theor. Phys. Suppl. 177, 105 (2009). doi: 10.1143/PTPS.177.105 (arxiv:0901.4748)ADSzbMATHCrossRefGoogle Scholar
  22. 22.
    Lotter, H.: Phenomenology of the BFKL pomeron and unitarity corrections at low x. hep-ph/9705288Google Scholar
  23. 23.
    Forshaw J.R., Ross D.A.: Quantum Chromodynamics and the Pomeron. Cambridge University Press, Cambridge (1997)CrossRefGoogle Scholar
  24. 24.
    Donnachie S., Dosch G., Landshoff P., Nachtmann O.: Pomeron Physics and QCD. Cambridge University Press, Cambridge (2002)zbMATHCrossRefGoogle Scholar
  25. 25.
    Essler F.H.L., Frahm H., Göhmann F., Klümper A., Korepin V.E.: The one-dimensional Hubbard model. Cambridge University Press, Cambridge (2005)zbMATHCrossRefGoogle Scholar
  26. 26.
    Plefka J.: Spinning strings and integrable spin chains in the AdS/CFT correspondence. Living Rev. Rel. 8, 9 (2005) hep-th/0507136Google Scholar
  27. 27.
    Minahan, J.A.: A brief introduction to the Bethe ansatz in \({\mathcal{N}}\) = 4 super-Yang–Mills. J. Phys. A. 39, 12657 (2006). doi: 10.1088/0305-4470/39/41/S02
  28. 28.
    Dorey N.: Notes on integrability in gauge theory and string theory. J. Phys. A. 42, 254001 (2009). doi: 10.1088/1751-8113/42/25/254001 MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    Arutyunov, G., Frolov, S.: Foundations of the AdS5 × S5 Superstring. Part I. J. Phys. A. 42, 254003 (2009). doi: 10.1088/1751-8113/42/25/254003 (arxiv:0901.4937)Google Scholar
  30. 30.
    Basso, B., Korchemsky, G.P.: Nonperturbative scales in AdS/CFT. J. Phys. A. 42, 254005 (2009). doi: 10.1088/1751-8113/42/25/254005 (arxiv:0901.4945)Google Scholar
  31. 31.
    Alday L.F.: Scattering amplitudes and the AdS/CFT correspondence. J. Phys. A. 42, 254006 (2009). doi: 10.1088/1751-8113/42/25/254006 MathSciNetADSCrossRefGoogle Scholar
  32. 32.
    Serban D.: Integrability and the AdS/CFT correspondence. J. Phys. A. 44, 124001 (2011). doi: 10.1088/1751-8113/44/12/124001 (arxiv:1003.4214)MathSciNetADSCrossRefGoogle Scholar
  33. 33.
    Fiamberti, F., Santambrogio, A., Sieg, C.: Superspace methods for the computation of wrapping effects in the standard and beta-deformed \({\mathcal{N}}\) = 4 SYM (arxiv:1006.3475)Google Scholar
  34. 34.
    Beisert, N.: The dilatation operator of \({\mathcal{N}}\) = 4 super Yang-Mills theory and integrability. Phys. Rept. 405, 1 (2005). doi: 10.1016/j.physrep.2004.09.007 (hep-th/0407277)
  35. 35.
    Swanson, I.: A review of integrable deformations in AdS/CFT. Mod. Phys. Lett. A. 22, 915 (2007). doi: 10.1142/S0217732307023614 (arxiv:0705.2844)
  36. 36.
    Okamura, K. Aspects of Integrability in AdS/CFT Duality (arxiv:0803.3999)Google Scholar
  37. 37.
    Vicedo B.: Finite-g Strings. J. Phys. A. 44, 124002 (2011). doi: 10.1088/1751-8113/44/12/124002 (arxiv:0810.3402)MathSciNetADSCrossRefGoogle Scholar
  38. 38.
    Rej, A.: Integrability and the AdS/CFT correspondence. J. Phys. A. 42, 254002 (2009). doi: 10.1088/1751-8113/42/25/254002 (arxiv:0907.3468)Google Scholar
  39. 39.
    Gromov N.: Integrability in AdS/CFT correspondence: Quasi-classical analysis. J. Phys. A. 42, 254004 (2009). doi: 10.1088/1751-8113/42/25/254004 MathSciNetADSCrossRefGoogle Scholar
  40. 40.
    Volin D.: Quantum integrability and functional equations. J. Phys. A. 44, 124003 (2011). doi: 10.1088/1751-8113/44/12/124003 (arxiv:1003.4725)MathSciNetADSCrossRefGoogle Scholar
  41. 41.
    Puletti, V.G.M.: On string integrability. A journey through the two-dimensional hidden symmetries in the AdS/CFT dualities. Adv. High Energy Phys. 2010, 471238 (2010). doi: 10.1155/2010/471238 (arxiv:1006.3494)
  42. 42.
    de Leeuw, M.: The S-matrix of the AdS5 × S5 superstring. arxiv:1007.4931Google Scholar
  43. 43.
    Schäfer-Nameki, S.: Strings and super-Yang–Mills theory: The integrable story. J. Stat. Mech. 0612, N001 (2006). doi: 10.1088/1742-5468/2006/12/N12001
  44. 44.
    Nicolai H.: String theory: Back to basics. Nature 449, 797 (2007). doi: 10.1038/449797a ADSCrossRefGoogle Scholar
  45. 45.
    Kristjansen, C., Staudacher, M., Tseytlin, A. (eds.): Gauge-string duality and integrability: Progress and outlook. J. Phys. A. 42, 250301 (2009). doi: 10.1088/1751-8121/42/25/250301
  46. 46.
    Dorey, P., Minahan, J., Tseytlin, A. (eds.): Quantum integrable models and gauge-string duality. J. Phys. A. 44, 120301 (2011). doi: 10.1088/1751-8121/44/12/120301 Google Scholar
  47. 47.
    Dorey, P., Dunne, G., Feinberg, J. (eds.): Recent Advances in Low-Dimensional Quantum Field Theories. J. Phys. A. 39(issue 41) (2006) (editorial). doi: 10.1088/0305-4470/39/41/E01
  48. 48.
    Alcaraz, F., Babelon, O., de Gier J., Foda, O. (eds.): The 75th Anniversary of the Bethe Ansatz, topical articles. J. Stat. Mech. http://iopscience.iop.org/1742-5468/focus/extra.topical2
  49. 49.
    Minahan, J.A.: Review of AdS/CFT Integrability, Chapter I.1: Spin Chains in \({\fancyscript{N}}\) = 4 SYM. Lett. Math. Phys. Published in this volume. arxiv:1012.3983Google Scholar
  50. 50.
    Sieg, C.: Review of AdS/CFT Integrability, Chapter I.2: The spectrum from perturbative gauge theory. Lett. Math. Phys. Published in this volume. arxiv:1012.3984Google Scholar
  51. 51.
    Rej, A.: Review of AdS/CFT Integrability, Chapter I.3: Long-range spin chains. Lett. Math. Phys. Published in this volume. arxiv:1012.3985Google Scholar
  52. 52.
    Tseytlin, A.: Review of AdS/CFT Integrability, Chapter II.1: Classical AdS5 × S5 string solutions. Lett. Math. Phys. Published in this volume. arxiv:1012.3986Google Scholar
  53. 53.
    McLoughlin, T.: Review of AdS/CFT Integrability, Chapter II.2: Quantum Strings in AdS5 × S5. Lett. Math. Phys. Published in this volume. arxiv:1012.3987Google Scholar
  54. 54.
    Magro, M.: Review of AdS/CFT Integrability, Chapter II.3: Sigma Model, Gauge Fixing. Lett. Math. Phys. Published in this volume. arxiv:1012.3988Google Scholar
  55. 55.
    Schäfer-Nameki, S.: Review of AdS/CFT Integrability, Chapter II.4: The Spectral Curve. Lett. Math. Phys. Published in this volume. arxiv:1012.3989Google Scholar
  56. 56.
    Staudacher, M.: Review of AdS/CFT Integrability, Chapter III.1: Bethe Ansätze and the R-Matrix Formalism. Lett. Math. Phys. Published in this volume. arxiv:1012.3990Google Scholar
  57. 57.
    Ahn, C., Nepomechie, R.I.: Review of AdS/CFT Integrability, Chapter III.2: Exact world-sheet S-matrix. Lett. Math. Phys. Published in this volume. arxiv:1012.3991Google Scholar
  58. 58.
    Vieira, P., Volin, D.: Review of AdS/CFT Integrability, Chapter III.3: The dressing factor. Lett. Math. Phys. Published in this volume. arxiv:1012.3992Google Scholar
  59. 59.
    Freyhult, L.: Review of AdS/CFT Integrability, Chapter III.4: Twist states and the cusp anomalous dimension. Lett. Math. Phys. Published in this volume. arxiv:1012.3993Google Scholar
  60. 60.
    Janik, R.: Review of AdS/CFT Integrability, Chapter III.5: Lüscher corrections. Lett. Math. Phys. Published in this volume. arxiv:1012.3994Google Scholar
  61. 61.
    Bajnok, Z.: Review of AdS/CFT Integrability, Chapter III.6: Thermodynamic Bethe Ansatz. Lett. Math. Phys. Published in this volume. arxiv:1012.3995Google Scholar
  62. 62.
    Kazakov, V., Gromov, N.: Review of AdS/CFT Integrability, Chapter III.7: Hirota Dynamics for Quantum Integrability. Lett. Math. Phys. Published in this volume. arxiv:1012.3996Google Scholar
  63. 63.
    Kristjansen, C.: Review of AdS/CFT Integrability, Chapter IV.1: Aspects of Non-planarity. Lett. Math. Phys. Published in this volume. arxiv:1012.3997Google Scholar
  64. 64.
    Zoubos, K.: Review of AdS/CFT Integrability, Chapter IV.2: Deformations, Orbifolds and Open Boundaries. Lett. Math. Phys. Published in this volume. arxiv:1012.3998Google Scholar
  65. 65.
    Klose, T.: Review of AdS/CFT Integrability, Chapter IV.3: \({\fancyscript{N}}\) = 6 Chern-Simons and Strings on AdS4 × CP3. Lett. Math. Phys. Published in this volume. arxiv:1012.3999Google Scholar
  66. 66.
    Korchemsky, G.: Review of AdS/CFT Integrability, Chapter IV.4: Integrability in QCD and \({\fancyscript{N}< \psi}\) SYM. Lett. Math. Phys. Published in this volume. arxiv:1012.4000Google Scholar
  67. 67.
    Dixon L.J.: Gluon scattering in \({\fancyscript{N}}\) = 4 super-Yang-Mills theory from weak to strong coupling. PoS RADCOR 2007, 056 (2007) arxiv:0803.2475Google Scholar
  68. 68.
    Alday L.F., Roiban R.: Scattering amplitudes, Wilson loops and the string/gauge theory correspondence. Phys. Rept. 468, 153 (2008) arxiv:0807.1889MathSciNetADSCrossRefGoogle Scholar
  69. 69.
    Henn J.M.: Duality between Wilson loops and gluon amplitudes. Fortsch. Phys. 57, 729 (2009) arxiv:0903.0522MathSciNetzbMATHCrossRefADSGoogle Scholar
  70. 70.
    Wolf M.: A first course on twistors, integrability and gluon scattering amplitudes. J. Phys. A 43, 393001 (2010) arxiv:1001.3871MathSciNetCrossRefGoogle Scholar
  71. 71.
    Drummond J. M.: Hidden simplicity of gauge theory amplitudes. Class. Quant. Grav. 27, 214001 (2010) arxiv:1010.2418ADSCrossRefGoogle Scholar
  72. 72.
    Roiban, R., Spradlin, M., Volovich, A. (eds.): Scattering amplitudes in gauge theories: progress and outlook. J. Phys. A. (to appear)Google Scholar
  73. 73.
    Roiban, R.: Review of AdS/CFT Integrability, Chapter V.1: Scattering Amplitudes—a Brief Introduction. Lett. Math. Phys. Published in this volume. arxiv:1012.4001Google Scholar
  74. 74.
    Drummond, J.M.: Review of AdS/CFT Integrability, Chapter V.2: Dual Superconformal Symmetry. Lett. Math. Phys. Published in this volume. arxiv:1012.4002Google Scholar
  75. 75.
    Alday, L.F.: Review of AdS/CFT Integrability, Chapter V.3: Scattering Amplitudes at Strong Coupling. Lett. Math. Phys. Published in this volume. arxiv:1012.4003Google Scholar
  76. 76.
    Beisert, N.: Review of AdS/CFT Integrability, Chapter VI.1: Superconformal Algebra. Lett. Math. Phys. Published in this volume. arxiv:1012.4004Google Scholar
  77. 77.
    Torrielli, A.: Review of AdS/CFT Integrability, Chapter VI.2: Yangian Algebra. Lett. Math. Phys. Published in this volume. arxiv:1012.4005Google Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  • Niklas Beisert
    • 1
  • Changrim Ahn
    • 2
  • Luis F. Alday
    • 3
    • 4
  • Zoltán Bajnok
    • 5
  • James M. Drummond
    • 6
    • 7
  • Lisa Freyhult
    • 8
  • Nikolay Gromov
    • 9
    • 10
  • Romuald A. Janik
    • 11
  • Vladimir Kazakov
    • 12
    • 13
  • Thomas Klose
    • 8
    • 14
  • Gregory P. Korchemsky
    • 15
  • Charlotte Kristjansen
    • 16
  • Marc Magro
    • 1
    • 17
  • Tristan McLoughlin
    • 1
  • Joseph A. Minahan
    • 8
  • Rafael I. Nepomechie
    • 18
  • Adam Rej
    • 19
  • Radu Roiban
    • 20
  • Sakura Schäfer-Nameki
    • 9
    • 21
  • Christoph Sieg
    • 22
    • 23
  • Matthias Staudacher
    • 1
    • 22
  • Alessandro Torrielli
    • 24
    • 25
  • Arkady A. Tseytlin
    • 19
  • Pedro Vieira
    • 26
  • Dmytro Volin
    • 20
  • Konstantinos Zoubos
    • 16
  1. 1.Max-Planck-Institut für GravitationsphysikAlbert-Einstein-InstitutPotsdamGermany
  2. 2.Department of Physics and Institute for the Early UniverseEwha Womans UniversitySeoulSouth Korea
  3. 3.Mathematical InstituteUniversity of OxfordOxfordUK
  4. 4.School of Natural SciencesInstitute for Advanced StudyPrincetonUSA
  5. 5.Theoretical Physics Research Group of the Hungarian Academy of SciencesBudapestHungary
  6. 6.PH-TH DivisionCERNGenevaSwitzerland
  7. 7.LAPTHUniversité de Savoie, CNRSAnnecy-le-Vieux CedexFrance
  8. 8.Division for Theoretical Physics, Department of Physics and AstronomyUppsala UniversityUppsalaSweden
  9. 9.Department of MathematicsKing’s CollegeLondonUK
  10. 10.PNPI, GatchinaSt. PetersburgRussia
  11. 11.Institute of PhysicsJagiellonian UniversityKrakówPoland
  12. 12.LPT, Ecole Normale SuperiéureParis Cedex 05France
  13. 13.Université Pierre et Marie Curie (Paris-VI)Paris Cedex 05France
  14. 14.Princeton Center for Theoretical SciencePrinceton UniversityPrincetonUSA
  15. 15.Institut de Physique ThéoriqueCEA SaclayGif-sur-Yvette CedexFrance
  16. 16.The Niels Bohr InstituteCopenhagenDenmark
  17. 17.Laboratoire de Physique, ENS Lyon et CNRS UMR 5672Université de LyonLyon Cedex 07France
  18. 18.Physics DepartmentUniversity of MiamiCoral GablesUSA
  19. 19.Blackett LaboratoryImperial College LondonLondonUK
  20. 20.Department of PhysicsThe Pennsylvania State UniversityUniversity ParkUSA
  21. 21.Kavli Institute for Theoretical PhysicsUniversity of CaliforniaSanta BarbaraUSA
  22. 22.Institut für Mathematik und Institut für PhysikHumboldt-Universität zu BerlinBerlinGermany
  23. 23.Niels Bohr International AcademyNiels Bohr InstituteCopenhagenDenmark
  24. 24.Department of MathematicsUniversity of YorkYorkUK
  25. 25.Institute for Theoretical PhysicsUtrecht University UtrechtThe Netherlands
  26. 26.Perimeter Institute for Theoretical PhysicsWaterlooCanada

Personalised recommendations