On Combinatorial Expansion of the Conformal Blocks Arising from AGT Conjecture

  • Vasyl A. Alba
  • Vladimir A. Fateev
  • Alexey V. Litvinov
  • Grigory M. Tarnopolskiy
Article

Abstract

In their recent paper, Alday et al. (Lett Math Phys 91:167–197, 2010) proposed a relation between \({\mathcal{N}=2}\) four-dimensional supersymmetric gauge theories and two-dimensional conformal field theories. As part of their conjecture they gave an explicit combinatorial formula for the expansion of the conformal blocks inspired by the exact form of the instanton part of the Nekrasov partition function. In this paper we study the origin of such an expansion from a CFT point of view. We consider the algebra \({\mathcal{A}={\sf Vir} \otimes\mathcal{H}}\) which is the tensor product of mutually commuting Virasoro and Heisenberg algebras and discover the special orthogonal basis of states in the highest weight representations of \({\mathcal{A}}\). The matrix elements of primary fields in this basis have a very simple factorized form and coincide with the function called \({Z_{{\sf bif}}}\) appearing in the instanton counting literature. Having such a simple basis, the problem of computation of the conformal blocks simplifies drastically and can be shown to lead to the expansion proposed in Alday et al. (2010). We found that this basis diagonalizes an infinite system of commuting Integrals of Motion related to Benjamin–Ono integrable hierarchy.

Mathematics Subject Classification (2010)

81T40 81T60 

Keywords

conformal field theory gauge theory 

References

  1. 1.
    Alday L.F., Gaiotto D., Tachikawa Y.: Liouville correlation functions from four-dimensional gauge theories. Lett. Math. Phys. 91, 167–197 (2010) arXiv:0906.3219MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    Belavin A.A., Polyakov A.M., Zamolodchikov A.B.: Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys. B 241, 333–380 (1984)MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    Polyakov A.M.: Nonhamiltonian approach to conformal quantum field theory. Zh. Eksp. Teor. Fiz. 66, 23–42 (1974)MathSciNetGoogle Scholar
  4. 4.
    Moore G.W., Seiberg N.: Classical and quantum conformal field theory. Commun. Math. Phys. 123, 177 (1989)MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    Yurov V.P., Zamolodchikov A.B.: Truncated conformal space approach to scaling Lee-Yang model. Int. J. Mod. Phys. A 5, 3221–3246 (1990)ADSCrossRefGoogle Scholar
  6. 6.
    Zamolodchikov Al.B.: Conformal symmetry in two-dimensions: an explicit reccurence formula for the conformal partial wave amplitude. Commun. Math. Phys. 96, 419–422 (1984)MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Hadasz L., Jaskolski Z., Suchanek P.: Recursive representation of the torus 1-point conformal block. JHEP 01, 063 (2010) arXiv:0911.2353MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Moore G.W., Nekrasov N., Shatashvili S.: Integrating over Higgs branches. Commun. Math. Phys. 209, 97–121 (2000) arXiv:hep-th/9712241MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    Nekrasov N.A.: Seiberg-Witten prepotential from instanton counting. Adv. Theor. Math. Phys. 7, 831–864 (2004) arXiv:hep-th/0206161MathSciNetGoogle Scholar
  10. 10.
    Nekrasov, N., Okounkov, A.: Seiberg-Witten theory and random partitions. arXiv:hep-th/0306238Google Scholar
  11. 11.
    Douglas, M.R., Moore, G.W.: D-branes, Quivers, and ALE instantons. arXiv:hep-th/9603167Google Scholar
  12. 12.
    Gaiotto, D., Maldacena, J.: The gravity duals of N = 2 superconformal field theories. arXiv:0904.4466Google Scholar
  13. 13.
    Gaiotto, D.: N = 2 dualities. arXiv:0904.2715Google Scholar
  14. 14.
    Benini F., Benvenuti S., Tachikawa Y.: Webs of five-branes and N = 2 superconformal field theories. JHEP 09, 052 (2009) arXiv:0906.0359MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    Fucito F., Morales J.F., Poghossian R.: Instantons on quivers and orientifolds. JHEP 10, 037 (2004) arXiv:hep-th/0408090MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    Flume R., Poghossian R.: An algorithm for the microscopic evaluation of the coefficients of the Seiberg-Witten prepotential. Int. J. Mod. Phys. A 18, 2541 (2003) hep-th/0208176MathSciNetADSMATHCrossRefGoogle Scholar
  17. 17.
    Shadchin S.: Cubic curves from instanton counting. JHEP 03, 046 (2006) arXiv:hep-th/0511132MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    Mironov A., Morozov A.: The power of Nekrasov functions. Phys. Lett. B 680, 188–194 (2009) arXiv:0908.2190MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    Marshakov A., Mironov A., Morozov A.: Zamolodchikov asymptotic formula and instanton expansion in N = 2 SUSY N f = 2N c QCD. JHEP 11, 048 (2009) arXiv:0909.3338MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    Mironov A., Morozov A.: Proving AGT relations in the large-c limit. Phys. Lett. B 682, 118–124 (2009) arXiv:0909.3531MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    Alba V., Morozov A.: Check of AGT relation for conformal blocks on sphere. Nucl. Phys. B 840, 441–468 (2010) arXiv:0912.2535MathSciNetADSMATHCrossRefGoogle Scholar
  22. 22.
    Fateev V.A., Litvinov A.V.: On AGT conjecture. JHEP 02, 014 (2010) arXiv: 0912.0504MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    Hadasz L., Jaskolski Z., Suchanek P.: Proving the AGT relation for N f = 0, 1, 2 antifundamentals. JHEP 06, 046 (2010) arXiv:1004.1841MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    Alday L.F., Tachikawa Y.: Affine SL(2) conformal blocks from 4d gauge theories. Lett. Math. Phys. 94, 87–114 (2010) arXiv:1005.4469MathSciNetADSMATHCrossRefGoogle Scholar
  25. 25.
    Carlsson, E., Okounkov, A.: Exts and vertex operators. arXiv:0801.2565Google Scholar
  26. 26.
    Bazhanov V.V., Lukyanov S.L., Zamolodchikov A.B.: Integrable structure of conformal field theory, quantum KdV theory and thermodynamic Bethe ansatz. Commun. Math. Phys. 177, 381–398 (1996) arXiv:hep-th/9412229MathSciNetADSMATHCrossRefGoogle Scholar
  27. 27.
    Bazhanov V.V., Lukyanov S.L., Zamolodchikov A.B.: Integrable structure of conformal field theory II. Q-operator and DDV equation. Commun. Math. Phys. 190, 247–278 (1997) arXiv:hep-th/9604044MathSciNetADSMATHCrossRefGoogle Scholar
  28. 28.
    Bazhanov V.V., Lukyanov S.L., Zamolodchikov A.B.: Integrable structure of conformal field theory. III: The Yang-Baxter relation. Commun. Math. Phys. 200, 297–324 (1999) arXiv:hep-th/9805008MathSciNetADSMATHCrossRefGoogle Scholar
  29. 29.
    Lebedev D., Radul A.: Generalized internal long waves equations: construction, Hamiltonian structure, and conservation laws. Commun. Math. Phys. 91, 543–555 (1983)MathSciNetADSMATHCrossRefGoogle Scholar
  30. 30.
    Degasperis A., Lebedev D., Olshanetsky M., Pakuliak S., Perelomov A., Santini P.: Nonlocal integrable partners to generalized MKdV and two-dimensional Toda lattice equation in the formalism of a dressing method with quantized spectral parameter. Commun. Math. Phys. 141, 133–151 (1991)MathSciNetADSMATHCrossRefGoogle Scholar
  31. 31.
    Degasperis A., Lebedev D., Olshanetsky M., Pakuliak S., Perelomov A., Santini P.: Generalized intermediate long-wave hierarchy in zero-curvature representation with noncommutative spectral parameter. J. Math. Phys. 33, 3783–3793 (1992)MathSciNetADSMATHCrossRefGoogle Scholar
  32. 32.
    Macdonald I.G.: Symmetric Functions and Hall Polynomials. Oxford University Press, Oxford (1995)MATHGoogle Scholar
  33. 33.
    Zamolodchikov A.B., Zamolodchikov Al.B.: Structure constants and conformal bootstrap in Liouville field theory. Nucl. Phys. B 477, 577–605 (1996) arXiv:hep-th/9506136MathSciNetADSMATHCrossRefGoogle Scholar
  34. 34.
    Sakamoto R., Shiraishi J., Arnaudon D., Frappat L., Ragoucy E.: Correspondence between conformal field theory and Calogero-Sutherland model. Nucl. Phys. B 704, 490–509 (2005) arXiv:hep-th/0407267MathSciNetADSMATHCrossRefGoogle Scholar
  35. 35.
    Kanie Y., Tsuchiya A.: Fock space representations of Virasoro algebra and intertwining operators. Proc. Jpn. Acad. Ser. A 62, 12–15 (1986)MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Dotsenko V.S., Fateev V.A.: Conformal algebra and multipoint correlation functions in 2d statistical models. Nucl. Phys. B 240, 312 (1984)MathSciNetADSCrossRefGoogle Scholar
  37. 37.
    Felder G.: BRST approach to minimal models. Nucl. Phys. B 317, 215 (1989)MathSciNetADSCrossRefGoogle Scholar
  38. 38.
    Dotsenko V.S., Fateev V.A.: Four point correlation functions and the operator algebra in the two-dimensional conformal invariant theories with the central charge c < 1. Nucl. Phys. B 251, 691 (1985)MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    Rains E.M.: BCn-symmetric polynomials. Transform. Groups 10, 63–132 (2005)MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Haglund, J.: The q, t-Catalan numbers and the space of diagonal harmonics. In: University Lecture Series, vol. 41. American Mathematical Society, Providence (2008). With an appendix on the combinatorics of Macdonald polynomialsGoogle Scholar
  41. 41.
    Lascoux, A.: Symmetric functions and combinatorial operators on polynomials. In: CBMS Regional Conference Series in Mathematics, vol. 99, Washington, DC (2003)Google Scholar
  42. 42.
    Feigin B.L., Fuks D.: Verma modules over Virasoro algebra. Lect. Notes Math. 1060, 230 (1984)CrossRefGoogle Scholar
  43. 43.
    Zamolodchikov Al.B.: Three-point function in the minimal Liouville gravity. Theor. Math. Phys. 142, 183–196 (2005) arXiv:hep-th/0505063MathSciNetMATHGoogle Scholar
  44. 44.
    Wyllard N.: A N–1 conformal Toda field theory correlation functions from conformal N = 2 SU(N) quiver gauge theories. JHEP 11, 002 (2009) arXiv:arXiv:0907.2189MathSciNetADSCrossRefGoogle Scholar
  45. 45.
    Mironov A., Morozov A.: On AGT relation in the case of U(3). Nucl. Phys. B 825, 1–37 (2010) arXiv:0908.2569MathSciNetADSMATHCrossRefGoogle Scholar
  46. 46.
    Warnaar S.O.: A Selberg integral for the Lie algebra A n. Acta Math. 203, 269–304 (2009) arXiv:0708.1193MathSciNetMATHCrossRefGoogle Scholar
  47. 47.
    Kadell K.W.J.: The Selberg-Jack symmetric functions. Adv. Math. 130, 33–102 (1997)MathSciNetMATHCrossRefGoogle Scholar
  48. 48.
    Kadell K.W.J.: An integral for the product of two Selberg–Jack symmetric functions. Compositio Math. 87, 5–43 (1993)MathSciNetMATHGoogle Scholar
  49. 49.
    Hua, L.K.: Harmonic analysis of functions of several complex variables in the classical domains. In: Translations of Mathematical Monographs, vol. 6. American Mathematical Society, Providence (1979)Google Scholar
  50. 50.
    Forrester P.J., Warnaar S.O.: The importance of the Selberg integral. Bull. Am. Math. Soc. 45, 489–534 (2008) arXiv:0710.3981MathSciNetMATHCrossRefGoogle Scholar
  51. 51.
    Warnaar S.O.: On the generalised Selberg integral of Richards and Zheng. Adv. App. Math. 40, 212 (2008) arXiv:0708.3107MathSciNetMATHCrossRefGoogle Scholar
  52. 52.
    Anderson G.W.: A short proof of Selberg’s generalized beta formula. Forum Math. 3, 415–417 (1991)MathSciNetMATHCrossRefGoogle Scholar
  53. 53.
    Forrester P.: Log-Gases and Random Matrices. Princeton University Press, Princeton (2010)MATHGoogle Scholar
  54. 54.
    Fateev V.A., Litvinov A.V.: Multipoint correlation functions in Liouville field theory and minimal Liouville gravity. Theor. Math. Phys. 154, 454–472 (2008) arXiv:0707.1664MathSciNetMATHCrossRefGoogle Scholar
  55. 55.
    Fateev V.A., Litvinov A.V.: Correlation functions in conformal Toda field theory I. JHEP 11, 002 (2007) arXiv:0709.3806MathSciNetADSCrossRefGoogle Scholar
  56. 56.
    Fateev V.A., Litvinov A.V.: Correlation functions in conformal Toda field theory II. JHEP 01, 033 (2009) arXiv:0810.3020MathSciNetADSCrossRefGoogle Scholar
  57. 57.
    Okounkov A.: (Shifted) Macdonald polynomials: q-integral representation and combinatorial formula. Compositio Math. 112, 147–182 (1998) arXiv:q-alg/9605013MathSciNetMATHCrossRefGoogle Scholar
  58. 58.
    Kuznetsov V.B., Mangazeev V.V., Sklyanin E.K.: Q-operator and factorised separation chain for Jack polynomials. Indag. Math. 14, 451 (2003) arXiv:math/0306242MathSciNetMATHCrossRefGoogle Scholar
  59. 59.
    Carlson, F.: Sur une classe de séries de Taylor. PhD thesis, Uppsala, Sweden (1914)Google Scholar
  60. 60.
    Stanley R.P.: Some combinatorial properties of Jack symmetric functions. Adv. Math. 77, 76–115 (1989)MathSciNetMATHCrossRefGoogle Scholar
  61. 61.
    Benjamin T.: Internal waves of permanent form in fluids of great depth. J. Fluid Mech. 29, 559–562 (1967)ADSMATHCrossRefGoogle Scholar
  62. 62.
    Ono H.: Algebraic solitary waves in stratified fluids. J. Phys. Soc. Jpn. 39, 1082–1091 (1975)ADSCrossRefGoogle Scholar
  63. 63.
    Abanov A.G., Bettelheim E., Wiegmann P.: Integrable hydrodynamics of Calogero-Sutherland model: bidirectional Benjamin-Ono equation. J. Phys. A 42, 135201 (2009) arXiv:0810.5327MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  • Vasyl A. Alba
    • 1
    • 2
    • 3
    • 4
  • Vladimir A. Fateev
    • 1
    • 5
  • Alexey V. Litvinov
    • 1
  • Grigory M. Tarnopolskiy
    • 1
    • 3
  1. 1.Landau Institute for Theoretical PhysicsChernogolovkaRussia
  2. 2.Bogolyubov Institute for Theoretical Physics NASUKievUkraine
  3. 3.Department of General and Applied PhysicsMoscow Institute of Physics and TechnologyDolgoprudnyRussia
  4. 4.Institute for Theoretical and Experimental PhysicsMoscowRussia
  5. 5.Laboratoire de Physique Théorique et AstroparticulesUniversité Montpellier II, UMR5207 CNRS-UM2MontpellierFrance

Personalised recommendations