Letters in Mathematical Physics

, Volume 98, Issue 2, pp 133–156

Norm of Logarithmic Primary of Virasoro Algebra



We give an algebraic proof of the formula on the norm of logarithmic primary of Virasoro algebra, which was proposed by Al. Zamolodchikov. This formula appears in the recursion formula for the norm of Gaiotto state, which guarantees the AGT relation for the four-dimensional SU(2) pure gauge theory.

Mathematics Subject Classification (2000)

17B68 05E05 


Virasoro algebra singular vector free field realization Jack symmetric polynomials 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Astashkevich A., Fuchs D.: Asymptotics for singular vectors in Verma modules over the Virasoro algebra. Pac. J. Math. 177(2), 201–209 (1997)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Alday L.F., Gaiotto D., Tachikawa Y.: Liouville correlation functions from four-dimensional gauge theories. Lett. Math. Phys. 91, 167–197 (2010)MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    Awata H., Matsuo Y., Odake S., Shiraishi J.: Excited states of the Calogero-Sutherland model and singular vectors of the W N algebra. Nucl. Phys. B 449, 347–374 (1995)MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Awata H., Yamada Y.: Five-dimensional AGT conjecture and the deformed Virasoro algebra. JHEP 1001, 125 (2010)MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    Bauer M., Di Francesco Ph., Itzykson C., Zuber J.B.: Singular vectors of the Virasoro algebra. Phys. Lett. B 260(3–4), 323–326 (1991)MathSciNetADSGoogle Scholar
  6. 6.
    Belavin A.A., Polyakov A.M., Zamolodchikov A.B.: Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys. B 241(2), 333–380 (1984)MathSciNetADSMATHCrossRefGoogle Scholar
  7. 7.
    Belavin A., Zamolodchikov Al.B.: Higher equations of motion in N =  1 SUSY Liouville field theory. JETP Lett. 84, 418–424 (2006) arXiv: hep-th/0610316ADSCrossRefGoogle Scholar
  8. 8.
    Benoit L., Saint-Aubin Y.: Degenerate conformal field theories and explicit expressions for some null vectors. Phys. Lett. B 215(3), 517–522 (1988)MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Braverman, A., Feigin, B., Rybnikov, L., Finkelberg, M.: A finite analog of the AGT relation I: finite W-algebras and quasimaps’ spaces. arXiv:1008.3655Google Scholar
  10. 10.
    Etingof P., Styrkas K.: Algebraic integrability of Schrödinger operators and representations of Lie algebras. Compos. Math. 98(1), 91–112 (1995)MathSciNetMATHGoogle Scholar
  11. 11.
    Fateev V.A., Litvinov A.V.: On AGT conjecture. JHEP 1002, 014 (2010)MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    Feigin B.L., Frenkel E.: Quantum \({\mathcal{W}}\) -algebras and elliptic algebras. Commun. Math. Phys. 178, 653–678 (1996)MathSciNetADSMATHCrossRefGoogle Scholar
  13. 13.
    Feigin, B.L., Fuchs, D.B.: Skew-symmetric invariant differential operators on the line and Verma modules over the Virasoro algebra. Funct. Anal. Appl. 16, 47–63, 96 (1982)Google Scholar
  14. 14.
    Feigin, B.L., Fuchs, D.B.: Representations of the Virasoro algebra. In: Representation of Lie groups and related topics. Adv. Stud. Contemp. Math., vol. 7, pp. 465–554. Gordon and Breach, New York (1990)Google Scholar
  15. 15.
    Di Francesco, P., Mathieu, P., Sénéchal, D.: Conformal field theory. In: Graduate Texts in Contemporary Physics. Springer, Berlin (1997)Google Scholar
  16. 16.
    Frenkel, E.: Langlands correspondence for loop groups. In: Cambridge Studies in Advanced Mathematics, vol. 103. Cambridge University Press, Cambridge (2007)Google Scholar
  17. 17.
    Frenkel, E., Ben-Zvi, D.: Vertex algebras and algebraic curves, 2nd edn. In: Mathematical Surveys and Monographs, vol. 88. American Mathematical Society, Providence (2004)Google Scholar
  18. 18.
    Fuchs, D.B.L: Singular vectors over the Virasoro algebra and extended Verma modules. In: Unconventional Lie algebras. Adv. Soviet Math., vol. 17, pp. 65–74. American Mathematical Society, Providenec (1993)Google Scholar
  19. 19.
    Gaiotto, D.: Asymptotically free N = 2 theories and irregular conformal blocks. arXiv:0908.0307 [hep-th]Google Scholar
  20. 20.
    Hadasz L., Jaskólski Z., Suchanek P.: Recursion representation of the Neveu-Schwarz superconformal block. JHEP 0703, 032 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    Hadasz L., Jaskólski Z., Suchanek P.: Elliptic recurrence representation of the N = 1 Neveu-Schwarz blocks. Nucl. Phys. B 798, 363–378 (2008)ADSMATHCrossRefGoogle Scholar
  22. 22.
    Hadasz L., Jaskólski Z., Suchanek P.: Elliptic recurrence representation of the N = 1 superconformal blocks in the Ramond sector. JHEP 0811, 060 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    Hadasz L., Jaskólski Z., Suchanek P.: Proving the AGT relation for N f = 0, 1, 2 antifundamentals. JHEP 1006, 1046 (2010)ADSGoogle Scholar
  24. 24.
    Hanlon, P.J., Stanley, R.P., Stembridge, J.R.: Some combinatorial aspects of the spectra of normally distributed random matrices. In: Hypergeometric functions on domains of positivity, Jack polynomials, and applications (Tampa, FL, 1991). Contemp. Math., vol. 138, pp. 151–174. American Mathematical Society. Providence (1992)Google Scholar
  25. 25.
    Imbimbo C., Mahapatra S., Mukhi S.: Construction of physical states of nontrivial ghost number in c < 1 string theory. Nucl. Phys. B 375(2), 399–420 (1992)MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    Itzykson, C., Drouffe, J.M.: Statistical field theory. In: Strong coupling, Monte Carlo methods, conformal field theory, and random systems. Cambridge Monographs on Mathematical Physics, vol. 2. Cambridge University Press, Cambridge (1989)Google Scholar
  27. 27.
    Jantzen, J.C.: Moduln mit einem höchsten Gewicht. In: Lect. Notes in Math., vol. 750. Springer, Berlin (1979)Google Scholar
  28. 28.
    Kac V.G.: Contravariant form for infinite-dimensional Lie algebras and superalgebras. Lect. Notes Phys. 94, 441–445 (1979)ADSCrossRefGoogle Scholar
  29. 29.
    Kent A.: Singular vectors of the Virasoro algebra. Phys. Lett. B 273(1–2), 56–62 (1991)MathSciNetADSGoogle Scholar
  30. 30.
    Kent A.: Projections of Virasoro singular vectors. Phys. Lett. B 278(4), 443–448 (1992)MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    Kato, M., Matsuda, S.: Null field construction in conformal and superconformal algebras. In: Conformal field theory and solvable lattice models (Kyoto, 1986). Adv. Stud. Pure Math., vol. 16, pp. 205–254. Academic Press, San Diego (1988)Google Scholar
  32. 32.
    Macdonald I.G.: Symmetric functions and Hall polynomials. Oxford Mathematical Monographs, 2nd edn. Oxford University Press, Oxford (1995)Google Scholar
  33. 33.
    Marshakov A., Mironov A., Morozov A.: On non-conformal limit of the AGT relations. Phys. Lett. B 682, 125–129 (2009)MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    Mimachi K., Yamada Y.: Singular vectors of the Virasoro algebra in terms of Jack symmetric polynomials. Commun. Math. Phys. 174, 447–455 (1995)MathSciNetADSMATHCrossRefGoogle Scholar
  35. 35.
    Nekrasov N.A.: Seiberg-Witten prepotential from instanton counting. Adv. Theoret. Math. Phys. 7(5), 831–864 (2003)MathSciNetMATHGoogle Scholar
  36. 36.
    Poghossian R.: Recursion relations in CFT and N = 2 SYM theory. JHEP 0912, 038 (2009)MathSciNetADSMATHCrossRefGoogle Scholar
  37. 37.
    Sakamoto R., Shiraishi J., Arnaudon D., Frappat L., Ragoucy E.: Correspondence between conformal field theory and Calogero-Sutherland model. Nucl. Phys. B 704, 490–509 (2005)MathSciNetADSMATHCrossRefGoogle Scholar
  38. 38.
    Shiraishi, J.: Lectures on Quantum Integrable Systems. SGC Library, vol. 28 (in Japanese). Saiensu-sha, Japan (2003)Google Scholar
  39. 39.
    Shiraishi J., Kubo H., Awata H., Odake S.: A quantum deformation of the Virasoro algebra and the Macdonald symmetric functions. Lett. Math. Phys. 38(1), 33–51 (1996)MathSciNetADSMATHCrossRefGoogle Scholar
  40. 40.
    Stanley R.P.: Some combinatorial properties of Jack symmetric functions. Adv. Math. 77(1), 76–115 (1989)MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Taki., M.: On AGT Conjecture for Pure Super Yang-Mills and W-algebra. arXiv: 0912.4789 [hep-th]Google Scholar
  42. 42.
    Tsuchiya A., Kanie Y.: Fock space representations of the Virasoro algebra. Intertwining operators. Publ. Res. Inst. Math. Sci. 22(2), 259–327 (1986)MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    Wyllard N.: A N-1 conformal Toda field theory correlation functions from conformal \({\mathcal{N} = 2}\) SU(N) quiver gauge theories. JHEP 0911, 002 (2009)MathSciNetADSCrossRefGoogle Scholar
  44. 44.
    Yanagida S.: Five-dimensional SU(2) AGT conjecture and recursive formula of deformed Gaiotto state. J. Math. Phys. 51, 123506 (2010)MathSciNetADSCrossRefGoogle Scholar
  45. 45.
    Zamolodchikov Al.B.: Conformal symmetry in two dimensions: an explicit recurrence formula for the conformal partial wave amplitude. Commun. Math. Phys. 96(3), 419–422 (1984)MathSciNetADSCrossRefGoogle Scholar
  46. 46.
    Zamolodchikov Al.B.: Conformal symmetry in two-dimensional space: on a recurrent representation of the conformal block. Teoret. Mat. Fiz. 73(1), 103–110 (1987)MathSciNetGoogle Scholar
  47. 47.
    Zamolodchikov, Al.B.: Higher equations of motion in Liouville field theory. Proceedings of 6th International Workshop on Conformal Field Theory and Integrable Models. Int. J. Modern Phys. A 19(May suppl.), 510–523 (2004). arXiv: hep-th/0312279Google Scholar
  48. 48.
    Zamolodchikov, A.B., Zamolodchikov, Al.B.: Conformal field theory and 2-D critical phenomena. 3. Conformal bootstrap and degenerate representations of conformal algebra. ITEP-90-31 (1990, preprint)Google Scholar
  49. 49.
    Zamolodchikov A.B., Zamolodchikov Al.B.: Conformal bootstrap in Liouville field theory. Nucl. Phys. B 477(2), 577–605 (1996)MathSciNetADSMATHCrossRefGoogle Scholar
  50. 50.
    Zamolodchikov, A.B., Zamolodchikov, Al.B.: Liouville field theory on a pseudosphere. arXiv: hep-th/0101152Google Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  1. 1.Department of MathematicsKobe UniversityRokko, KobeJapan

Personalised recommendations