Letters in Mathematical Physics

, Volume 96, Issue 1–3, pp 367–403

The Three-Wave Resonant Interaction Equations: Spectral and Numerical Methods

  • Antonio Degasperis
  • Matteo Conforti
  • Fabio Baronio
  • Stefan Wabnitz
  • Sara Lombardo
Article

Abstract

The spectral theory of the integrable partial differential equations which model the resonant interaction of three waves is considered with the purpose of numerically solving the direct spectral problem for both vanishing and non vanishing boundary values. Methods of computing both the continuum spectrum data and the discrete spectrum eigenvalues are given together with examples of such computations. The explicit spectral representation of the Manley-Rowe invariants is also displayed.

Mathematics Subject Classification (2000)

74J30 37K15 65Z05 

Keywords

three-wave resonant interaction spectral theory numerical computation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ablowitz M.J., Kaup D.J., Newell A.C., Segur H.: Method for Solving the Sine–Gordon Equation. Phys. Rev. Lett. 30, 1262 (1973)CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Gardner C.S., Greene J.M., Kruskal M.D., Miura R.M.: Method for solving the Korteweg-de Vries equation. Phys. Rev. Lett. 19, 1095 (1967)CrossRefMATHADSGoogle Scholar
  3. 3.
    Zakharov, V.E., Shabat, A.B.: Exact theory of two-dimensional self-focusing and one- dimensional self-modulation of waves in non linear media. Zh. Exp. Teor. Fiz., 61, 118 (1971) (Russian); English transl. in Sov. Phys. JEPT, 34, 62 (1972)Google Scholar
  4. 4.
    Ablowitz M.J., Segur H.: Solitons and the Inverse Scattering Transform. SIAM, Philadelphia (1981)MATHCrossRefGoogle Scholar
  5. 5.
    Wadati M.: The exact solution of the modified Korteweg-de Vries equation. J. Phys. Soc. Japan 32, 1681 (1972)CrossRefADSGoogle Scholar
  6. 6.
    Calogero F., Degasperis A.: Solution by spectral-transform method of a non-linear evolution equation including as a special case cylindrical KDV equation. Lett. Nuovo Cim. 23, 150 (1978)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Mikhailov A.V.: On the integrability of two-dimensional generalization of the toda Lattice. Sov. Phys. JEPT Lett. 30, 414 (1979)ADSGoogle Scholar
  8. 8.
    Fordy A.P., Gibbons J.: Integrable non-linear Klein–Gordon equations and toda- lattices. Commun. Math. Phys. 77, 21 (1980)CrossRefMATHADSMathSciNetGoogle Scholar
  9. 9.
    Pohlmeyer K.: Integrable hamiltonian systems and interactions through quadratic constraints. Commun. Math. Phys. 46, 207 (1976)CrossRefMATHADSMathSciNetGoogle Scholar
  10. 10.
    Lund F., Regge T.: Unified approach to strings and vortices with soliton solutions. Phys. Rev. D14, 1524 (1976)ADSMathSciNetGoogle Scholar
  11. 11.
    Gibbon J.D., Caudrey P.J., Bullough R.K., Eilbeck J.C.: AnN-soliton solution of a nonlinear optics equation derived by a general inverse method. Lett. Nuovo Cim. 8, 775 (1973)CrossRefGoogle Scholar
  12. 12.
    Lamb G.L.: Phase variation in coherent-optical-pulse propagation. Phys. Rev. Lett. 31, 196 (1973)CrossRefADSGoogle Scholar
  13. 13.
    Ablowitz M.J., Kaup D.J., Newell A.C.: Coherent pulse propagation a dispersive irreversible phenomenon. J. Math. Phys. 15, 1852 (1974)CrossRefADSGoogle Scholar
  14. 14.
    Manakov S.V.: Complete integrability and stochastization of discrete dynamical systems. Sov. Phys. JEPT 40, 269 (1975)ADSMathSciNetGoogle Scholar
  15. 15.
    Mikhailov A.V.: Integrability of 2-dimensional thirring model. JEPT Lett. 23, 320 (1976)ADSGoogle Scholar
  16. 16.
    Villarroel J.: The DBAR problem and the thirring model. Stud. Appl. Math. 84, 207 (1991)MATHMathSciNetGoogle Scholar
  17. 17.
    Kruskal M.: The Korteweg-de Vries equation and related evolution equations. Lect. Appl. Math. 15, 61 (1974)MathSciNetGoogle Scholar
  18. 18.
    Zakharov V.E., Manakov S.V.: Resonance interaction of wave packets. Sov. Phys. JEPT Lett. 18, 243 (1973)ADSGoogle Scholar
  19. 19.
    Ablowitz M.J., Haberman R.: Resonantly coupled nonlinear evolution equations. J. Math. Phys. 16, 2301 (1975)CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Kaup D.J.: The three-wave interaction—a nondispersive phenomenon. Stud. Appl. Math 55, 9–44 (1976)MathSciNetGoogle Scholar
  21. 21.
    Ablowitz M.J., Clarkson P.A.: Solitons, nonlinear evolution equations and inverse scattering. Cambridge University Press, Cambridge (1991)CrossRefMATHGoogle Scholar
  22. 22.
    Newell A.C.: Solitons in Mathematics and Physics. SIAM, Philadelphia (1985)CrossRefGoogle Scholar
  23. 23.
    Dodd R.K., Eilbeck J.C., Gibbon J.D., Morris H.C.: Solitons and Nonlinear Wave Equations. Academic Press, London (1982)MATHGoogle Scholar
  24. 24.
    Calogero F., Degasperis A.: Spectral Transform and Solitons, vol. 1. North Holland Publishing, Amsterdam (1982)Google Scholar
  25. 25.
    Picozzi A., Haelterman M.: Spontaneous formation of symbiotic solitary waves in a backward quasi-phase-matched parametric oscillator. Opt. Lett. 23, 1808 (1998)CrossRefADSGoogle Scholar
  26. 26.
    Malkin V.M., Shvets G., Fish N.J.: Detuned Raman amplification of short laser pulses in plasma. Phys. Rev. Lett. 84, 1208 (2000)CrossRefADSGoogle Scholar
  27. 27.
    Dodin I.Y., Fish N.J.: Storing, retrieving, and processing optical information by Raman backscattering in plasmas. Phys. Rev. Lett. 88, 165001 (2002)CrossRefADSGoogle Scholar
  28. 28.
    Calogero F., Degasperis A.: Novel solution of the system describing the resonant interaction of three waves. Phys. D Nonlinear Phenom. 200(3), 242 (2005)CrossRefMATHADSMathSciNetGoogle Scholar
  29. 29.
    Degasperis A., Conforti M., Baronio F., Wabnitz S.: Stable control of pulse speed in parametric three-wave solitons. Phys. Rev. Lett. 97, 093901 (2006)CrossRefADSGoogle Scholar
  30. 30.
    Conforti M., Degasperis A., Baronio F., Wabnitz S.: Inelastic scattering and interactions of three-wave parametric solitons. Phys. Rev. E 74, 065602(R) (2006)CrossRefADSGoogle Scholar
  31. 31.
    Conforti M., Baronio F., Degasperis A., Wabnitz S.: Parametric frequency conversion of short optical pulses controlled by a CW background. Opt. Express 15, 12246 (2007)CrossRefADSGoogle Scholar
  32. 32.
    Baronio F., Conforti M., Degasperis A., Wabnitz S.: Three-wave trapponic solitons for tunable high-repetition rate pulse train generation. IEEE J. Quantum Electron. 44, 542 (2008)CrossRefADSGoogle Scholar
  33. 33.
    Baronio F., Conforti M., Andreana M., Couderc V., De Angelis C., Wabnitz S., Barthelemy A., Degasperis A.: Frequency generation and solitonic decay in three-wave interactions. Opt. Express 17, 12889 (2009)CrossRefGoogle Scholar
  34. 34.
    Baronio F., Conforti M., De Angelis C., Degasperis A., Andreana M., Couderc V., Barthelemy A.: Velocity-locked solitary waves in quadratic media. Phys. Rev. Lett. 104, 113902 (2010)CrossRefADSGoogle Scholar
  35. 35.
    Calogero F.: Why are certain nonlinear PDEs both widely applicable and integrable?. In: Zakharov, V.E. (eds) What is Integrability?, pp. 1–62. Springer, Berlin (1990)Google Scholar
  36. 36.
    Kaup D.J., Reiman A., Bers A.: Space–time evolution of nonlinear three-wave interactions. I. Interaction in a homogeneous medium. Rev. Mod. Phys. 51, 277 (1979)ADSMathSciNetGoogle Scholar
  37. 37.
    Degasperis A., Lombardo S.: Exact solutions of the 3-wave resonant interaction equation. Phys. D Nonlinear Phenom. 214, 157 (2006)CrossRefMATHADSMathSciNetGoogle Scholar
  38. 38.
    Degasperis A., Lombardo S.: Multicomponent integrable wave equations I. The Darboux–Dressing transformations. J. Phys. A: Math. Theor. 40, 961 (2007)CrossRefMATHADSMathSciNetGoogle Scholar
  39. 39.
    Degasperis A., Lombardo S.: Multicomponent integrable wave equations. II. Soliton solutions. J. Phys. A: Math. Theor. 42, 385206 (2009)CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  • Antonio Degasperis
    • 2
    • 3
  • Matteo Conforti
    • 1
  • Fabio Baronio
    • 1
  • Stefan Wabnitz
    • 1
  • Sara Lombardo
    • 4
    • 5
  1. 1.CNISM and Dipartimento di Ingegneria dell’InformazioneUniversità di BresciaBresciaItaly
  2. 2.Dipartimento di FisicaUniversità di Roma “La Sapienza”RomeItaly
  3. 3.Istituto Nazionale di Fisica NucleareSezione di RomaRomeItaly
  4. 4.Department of MathematicsVrije UniversiteitAmsterdamThe Netherlands
  5. 5.School of MathematicsUniversity of ManchesterManchesterUK

Personalised recommendations