Advertisement

Letters in Mathematical Physics

, Volume 91, Issue 2, pp 167–197 | Cite as

Liouville Correlation Functions from Four-Dimensional Gauge Theories

  • Luis F. Alday
  • Davide Gaiotto
  • Yuji Tachikawa
Article

Abstract

We conjecture an expression for the Liouville theory conformal blocks and correlation functions on a Riemann surface of genus g and n punctures as the Nekrasov partition function of a certain class of \({\mathcal{N}=2}\) SCFTs recently defined by one of the authors. We conduct extensive tests of the conjecture at genus 0, 1.

Mathematics Subject Classification (2000)

81T40 81T60 

Keywords

conformal field theory gauge theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gaiotto, D.: \({\mathcal{N}=2}\) dualities. arXiv:0904.2715 [hep-th]Google Scholar
  2. 2.
    Nekrasov N.A.: Seiberg–Witten prepotential from instanton counting. Adv. Theor. Math. Phys. 7, 831–864 (2004) arXiv:hep-th/0206161MathSciNetGoogle Scholar
  3. 3.
    Nekrasov, N., Okounkov, A.: Seiberg–Witten theory and random partitions. arXiv:hep-th/0306238Google Scholar
  4. 4.
    Pestun, V.: Localization of gauge theory on a four-sphere and supersymmetric Wilson loops. arXiv:0712.2824 [hep-th]Google Scholar
  5. 5.
    Dorn H., Otto H.-J.: Two and three-point functions in Liouville theory. Nucl. Phys. B 429, 375–388 (1994) arXiv:hep-th/9403141zbMATHCrossRefMathSciNetADSGoogle Scholar
  6. 6.
    Zamolodchikov A.B., Zamolodchikov Al.B.: Structure constants and conformal bootstrap in Liouville field theory. Nucl. Phys. B 477, 577–605 (1996) arXiv:hep-th/9506136zbMATHCrossRefMathSciNetADSGoogle Scholar
  7. 7.
    Teschner J.: On the Liouville three point function. Phys. Lett. B 363, 65–70 (1995) arXiv:hep-th/9507109CrossRefADSGoogle Scholar
  8. 8.
    Seiberg N., Witten E.: Monopoles, duality and chiral symmetry breaking in \({\mathcal{N}=2}\) supersymmetric QCD. Nucl. Phys. B 431, 484–550 (1994) arXiv:hep-th/9408099zbMATHCrossRefMathSciNetADSGoogle Scholar
  9. 9.
    Dorey N., Khoze V.V., Mattis M.P.: On \({\mathcal{N} = 2}\) supersymmetric QCD with 4 flavors. Nucl. Phys. B 492, 607–622 (1997) arXiv:hep-th/9611016CrossRefMathSciNetADSGoogle Scholar
  10. 10.
    Grimm T.W., Klemm A., Mariño M., Weiss M.: Direct integration of the topological string. JHEP 08, 058 (2007) arXiv:hep-th/0702187CrossRefADSGoogle Scholar
  11. 11.
    Hollowood T.J., Iqbal A., Vafa C.: Matrix models, geometric engineering and elliptic genera. JHEP 03, 069 (2008) arXiv:hep-th/0310272CrossRefMathSciNetADSGoogle Scholar
  12. 12.
    Iqbal, A., Kozçaz, C., Vafa, C.: The refined topological vertex. arXiv:hep-th/0701156Google Scholar
  13. 13.
    Ponsot, B., Teschner, J.: Liouville bootstrap via harmonic analysis on a noncompact quantum group. arXiv:hep-th/9911110Google Scholar
  14. 14.
    Teschner J.: A lecture on the Liouville vertex operators. Int. J. Mod. Phys. A 19(2), 436–458 (2004) arXiv:hep-th/0303150zbMATHCrossRefMathSciNetADSGoogle Scholar
  15. 15.
    Teschner, J.: From Liouville theory to the quantum geometry of Riemann surfaces. arXiv:hep-th/0308031Google Scholar
  16. 16.
    Teschner, J.: An analog of a modular functor from quantized Teichmuller theory. arXiv:math/0510174Google Scholar
  17. 17.
    Teschner, J.: Nonrational conformal field theory. arXiv:0803.0919 [hep-th]Google Scholar
  18. 18.
    Hadasz, L., Jaskólski, Z., Suchanek, P.: Modular bootstrap in Liouville field theory. arXiv:0911.4296 [hep-th]Google Scholar
  19. 19.
    Nanopoulos, D.V., Xie, D.: On crossing symmmetry and modular invariance in conformal field theory and S duality in gauge theory. Phys. Rev. D 80, 105015 (2009). arXiv:0908.4409 [hep-th]Google Scholar
  20. 20.
    Eguchi T., Kanno H.: Geometric transitions, Chern–Simons gauge theory and Veneziano type amplitudes. Phys. Lett. B 585, 163–172 (2004) arXiv:hep-th/0312234CrossRefMathSciNetADSGoogle Scholar
  21. 21.
    Iqbal A., Kashani-Poor A.-K.: The vertex on a strip. Adv. Theor. Math. Phys. 10, 317–343 (2006) arXiv:hep-th/0410174zbMATHMathSciNetGoogle Scholar
  22. 22.
    Witten, E.: Quantum background independence in string theory. arXiv:hep-th/9306122Google Scholar
  23. 23.
    Aganagic M., Klemm A., Mariño M., Vafa C.: The topological vertex. Commun. Math. Phys. 254, 425–478 (2005) arXiv:hep-th/0305132zbMATHCrossRefADSGoogle Scholar
  24. 24.
    Aganagic M., Dijkgraaf R., Klemm A., Mariño M., Vafa C.: Topological strings and integrable hierarchies. Commun. Math. Phys. 261, 451–516 (2006) arXiv:hep-th/0312085zbMATHCrossRefADSGoogle Scholar
  25. 25.
    Ooguri H., Strominger A., Vafa C.: Black hole attractors and the topological string. Phys. Rev. D 70, 106007 (2004) arXiv:hep-th/0405146CrossRefMathSciNetADSGoogle Scholar
  26. 26.
    Mariño M., Wyllard N.: A note on instanton counting for \({\mathcal{N} = 2}\) gauge theories with classical gauge groups. JHEP 05, 021 (2004) arXiv:hep-th/0404125CrossRefADSGoogle Scholar
  27. 27.
    Nekrasov N., Shadchin S.: ABCD of instantons. Commun. Math. Phys. 252, 359–391 (2004) arXiv:hep-th/0404225zbMATHCrossRefMathSciNetADSGoogle Scholar
  28. 28.
    Shadchin S.: Cubic curves from instanton counting. JHEP 03, 046 (2006) arXiv:hep-th/0511132CrossRefMathSciNetADSGoogle Scholar
  29. 29.
    Teschner J.: Liouville theory revisited. Class. Quant. Grav. 18, R153–R222 (2001) arXiv:hep-th/0104158zbMATHCrossRefMathSciNetADSGoogle Scholar
  30. 30.
    Nakayama Y.: Liouville field theory: a decade after the revolution. Int. J. Mod. Phys. A 19, 2771–2930 (2004) arXiv:hep-th/0402009zbMATHCrossRefMathSciNetADSGoogle Scholar
  31. 31.
    Belavin A.A., Polyakov A.M., Zamolodchikov A.B.: Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys. B 241, 333–380 (1984)zbMATHCrossRefMathSciNetADSGoogle Scholar
  32. 32.
    Sonoda H.: Sewing conformal field theories. Nucl. Phys. B 311, 401 (1988)CrossRefMathSciNetADSGoogle Scholar
  33. 33.
    Moore G.W., Seiberg N.: Classical and quantum conformal field theory. Commun. Math. Phys. 123, 177 (1989)zbMATHCrossRefMathSciNetADSGoogle Scholar
  34. 34.
    Di Francesco P., Mathieu P., Sénéchal D.: Conformal field theory. Springer, Berlin (1997)zbMATHGoogle Scholar
  35. 35.
    Barnes E.W.: The theory of the double gamma function. Phil. Trans. Roy. Soc. Lond. A 196, 265–387 (1901)CrossRefADSGoogle Scholar
  36. 36.
    Fucito F., Morales J.F., Poghossian R.: Instantons on quivers and orientifolds. JHEP 10, 037 (2004) arXiv:hep-th/0408090CrossRefMathSciNetADSGoogle Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  • Luis F. Alday
    • 1
  • Davide Gaiotto
    • 1
  • Yuji Tachikawa
    • 1
  1. 1.School of Natural SciencesInstitute for Advanced StudyPrincetonUSA

Personalised recommendations