Letters in Mathematical Physics

, Volume 91, Issue 2, pp 119–127

Jucys–Murphy Elements and Weingarten Matrices

Article

Abstract

We provide a compact proof of the recent formula of Collins and Matsumoto for the Weingarten matrix of the orthogonal group using Jucys–Murphy elements.

Mathematics Subject Classification (2000)

05E10 20B30 20C40 

Keywords

Weingarten matrix Jucys–Murphy elements orthogonal group 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Banica, T.: The orthogonal Weingarten formula in compact form. Lett. Math. Phys. 91 (2010). arXiv:0906.4694; doi:10.1007/s11005-009-0363-y
  2. 2.
    Collins B.: Moments and cumulants of polynomial random variables on unitary groups, the Itzykson–Zuber integral, and free probability. Int. Math. Res. Not. 17, 953–982 (2003) arXiv:math-ph/0205010CrossRefGoogle Scholar
  3. 3.
    Collins, B., Matsumoto, S.: On some properties of orthogonal Weingarten functions. (Preprint, 2009). arXiv:0903.5143Google Scholar
  4. 4.
    Collins B., Śniady P.: Integration with respect to the Haar measure on unitary, orthogonal and symplectic group. Comm. Math. Phys. 264(3), 773–795 (2006) arXiv: math-ph/0402073MATHCrossRefMathSciNetADSGoogle Scholar
  5. 5.
    Jucys A.-A.: Symmetric polynomials and the center of the symmetric group ring. Rep. Mathematical Phys. 5(1), 107–112 (1974)MATHCrossRefMathSciNetADSGoogle Scholar
  6. 6.
    Matsumoto, S., Novak, J.: Symmetric polynomials in Jucys–Murphy elements and the Weingarten function. (Preprint, 2009). arXiv:0905.1992Google Scholar
  7. 7.
    Murphy G.: A new construction of Young’s seminormal representation of the symmetric groups. J. Algebra 69(2), 287–297 (1981)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Novak, J.: Complete homogeneous symmetric polynomials in Jucys–Murphy elements and the Weingarten function. (Preprint, 2009). arXiv:0811.3595Google Scholar
  9. 9.
    Weingarten D.: Asymptotic behavior of group integrals in the limit of infinite rank. J. Math. Phys. 19(5), 999–1001 (1978)MATHCrossRefMathSciNetADSGoogle Scholar
  10. 10.
    Zuber, J.-B.: The large N limit of matrix integrals over the orthogonal group. J. Phys. A 41, 382001 (2008). arXiv:0805.0315; doi:10.1088/1751-8113/41/38/382001

Copyright information

© Springer 2009

Authors and Affiliations

  1. 1.UPMC Univ Paris 6, CNRS UMR 7589, LPTHEParis CedexFrance

Personalised recommendations