Advertisement

Letters in Mathematical Physics

, Volume 84, Issue 2–3, pp 179–198 | Cite as

Asymptotic Behavior of Beta-Integers

  • Lubomira Balková
  • Jean-Pierre Gazeau
  • Edita Pelantová
Article

Abstract

Beta-integers (“β-integers”) are those numbers which are the counterparts of integers when real numbers are expressed in an irrational base β > 1. In quasicrystalline studies, β-integers supersede the “crystallographic” ordinary integers. When the number β is a Parry number, the corresponding β-integers realize only a finite number of distances between consecutive elements and are in this sense the most comparable to ordinary integers. In this paper, we point out the similarity of β-integers and ordinary integers in the asymptotic sense, in particular for a subclass of Parry numbers – Pisot numbers for which their Parry and minimal polynomial coincide.

Keywords

beta-integers beta-numeration asymptotic behavior quasicrystals aperiodic structure 

Mathematics Subject Classification (2000)

11R06 52C23 11B05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shechtman D., Blech I., Gratias D., Cahn J. W.: Metallic phase with long range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951–1953 (1984)CrossRefADSGoogle Scholar
  2. 2.
    Janot C.: Quasicrystals: A Primer. Oxford University Press, Oxford (1993)Google Scholar
  3. 3.
    Burdík Č., Frougny Ch., Gazeau J.P., Krejcar R.: Beta-integers as natural counting systems for quasicrystals. J. Phys. A Math. Gen. 31, 6449–6472 (1998)CrossRefADSzbMATHGoogle Scholar
  4. 4.
    Elkharrat A., Frougny Ch., Gazeau J.P., Verger-Gaugry J.L.: Symmetry groups for beta-lattices. Theor. Comput. Sci. 319, 281–305 (2004)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Meyer Y.: Algebraic Numbers and Harmonic Analysis. North-Holland, Amsterdam (1972)zbMATHGoogle Scholar
  6. 6.
    Frougny Ch., Gazeau J.P., Krejcar R.: Additive and multiplicative properties of point-sets based on beta-integers. Theor. Comput. Sci. 303, 491–516 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Gazeau J.P., Verger-Gaugry J.L.: Geometric study of the beta-integers for a Perron number and mathematical quasicrystals. J. Th. Nr. Bordx. 16, 1–25 (2004)MathSciNetGoogle Scholar
  8. 8.
    Gazeau J.P., Verger-Gaugry J.L.: Diffraction spectra of weighted Delone sets on beta-lattices with beta a quadratic unitary Pisot number. Ann. l’institut Fourier 56, 2437–2461 (2006)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Moody, R.V.: Meyer sets and their duals. In: Moody, R.V. (ed.) Proceedings of the NATO-Advanced Study Institute on Long-range Aperiodic Order. The Mathematics of Aperiodic Order. NATO ASI Series C489, pp. 403–441. Kluwer Academic Press, Dordrecht (1997)Google Scholar
  10. 10.
    Rényi A.: Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hung. 8, 477–493 (1957)CrossRefzbMATHGoogle Scholar
  11. 11.
    Parry W.: On the beta-expansions of real numbers. Acta Math. Acad. Sci. Hung. 11, 401–416 (1960)CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    Thurston W.P. (1989) Groups, tilings, and finite state automata, Geometry supercomputer project research report GCG1. University of Minnesota, MinnesotaGoogle Scholar
  13. 13.
    Minc H.: Nonnegative Matrices. Wiley, New York (1988)zbMATHGoogle Scholar
  14. 14.
    Queffélec M. (1987) Substitution Dynamical Systems–Spectral Analysis. Lecture Notes in Mathematics, vol. 1294. Springer, BerlinGoogle Scholar
  15. 15.
    Bertrand A.: Développements en base de Pisot et répartition modulo 1. C. R. Acad. Sci. Paris 285, 419–421 (1977)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Fabre S.: Substitutions et β-systèmes de numération. Theoret. Comput. Sci. 137, 219–236 (1995)CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    Lothaire, M.: Combinatorics on Words. Encyclopedia of Mathematics. Cambridge University Press, London (1983)Google Scholar
  18. 18.
    Boyd D.: On beta expansion for Pisot numbers. Math. Comput. 65, 841–860 (1996)CrossRefADSzbMATHGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Lubomira Balková
    • 1
    • 2
  • Jean-Pierre Gazeau
    • 2
  • Edita Pelantová
    • 1
  1. 1.Department of MathematicsFNSPE, Czech Technical UniversityPraha 2Czech Republic
  2. 2.Laboratoire APCUniversité Paris 7-Denis DiderotParis Cedex 13France

Personalised recommendations