Letters in Mathematical Physics

, Volume 83, Issue 3, pp 305–313 | Cite as

Exact Solution of the Landau-Lifshitz Equation in a Plane Wave

Article

Abstract

The Landau–Lifshitz (The Classical Theory of Fields. Elsevier, Oxford 1975) form of the Lorentz–Abraham–Dirac equation in the presence of a plane wave of arbitrary shape and polarization is solved exactly and in closed form. The explicit solution is presented in the particular, paradigmatic cases of a constant crossed field and of a monochromatic wave with circular and with linear polarization.

Mathematics Subject Classification (2000)

78A35 (Motion of charged particles) 70H40 (Relativistic dynamics) 

Keywords

Classical dynamics of charged particles including the radiation reaction exact solution of the equations of motion of a relativistic electric charge 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abraham M. (1902). Prinzipien der Dynamik des Elektrons. Ann. Phys. (Leipzig) 315: 105–179 CrossRefADSGoogle Scholar
  2. 2.
    Abraham M. (1904). Zur Theorie der Strahlung und des Strahlungsdruckes. Ann. Phys. (Leipzig) 319: 236–287 CrossRefADSGoogle Scholar
  3. 3.
    Ares de Parga G. and Mares R. (1999). Exact solution of the Herrera equation of motion in classical electrodynamics. J. Math. Phys. 40: 4807–4812 MATHCrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Bahk S.-W., (2004). Generation and characterization of the highest laser intensities (10(22) W/cm(2)). Opt. Lett. 29: 2837–2839 CrossRefADSGoogle Scholar
  5. 5.
    Bulanov S.V., (2004). Interaction of electromagnetic waves with plasma in the radiation-dominated regime. Plasma Phys. Rep. 30: 196–213 CrossRefADSGoogle Scholar
  6. 6.
    Dirac P.A.M. (1938). Classical theory of radiating electrons. Proc. R. Soc. Lond. Ser. A 167: 148 MATHADSCrossRefGoogle Scholar
  7. 7.
  8. 8.
    Gora E. (1951). Radiation reaction in relativistic motion of a particle in a wave field. Phys. Rev. 84: 1119–1123 MATHCrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Gordienko S., (2005). Coherent focusing of high harmonics: a new way towards the extreme intensities. Phys. Rev. Lett. 94: 103903 CrossRefADSGoogle Scholar
  10. 10.
    Grewing M., Schrüfer E. and Heintzmann H. (1973). Acceleration of charged-particles and radiation reaction in strong plane and spherical waves II. Zeit. für Physik 260: 375–384 CrossRefADSGoogle Scholar
  11. 11.
    Hartemann F.V. and Kerman A.K. (1996). Classical theory of nonlinear Compton scattering. Phys. Rev. Lett. 76: 624–627 CrossRefADSGoogle Scholar
  12. 12.
    Hartemann F.V. (1998). High-intensity scattering processes of relativistic electrons in vacuum. Phys. Plasmas 5: 2037–2047 CrossRefADSGoogle Scholar
  13. 13.
    Hartemann F.V., Gibson D.J. and Kerman A.K. (2005). Classical theory of Compton scattering: assessing the validity of the Dirac-Lorentz equation. Phys. Rev. E 72: 026502 CrossRefADSGoogle Scholar
  14. 14.
    Heintzmann H. and Grewing M. (1972). Acceleration of charged-particles and radiation reaction in strong plane and spherical waves I. Zeit. für Physik 251: 77–86 CrossRefADSGoogle Scholar
  15. 15.
    Heintzmann H. and Schrüfer E. (1973). Exact solutions of Lorentz–Dirac equations of motion for charged-particles in constant electromagnetic fields. Phys. Lett. A 43: 287–288 CrossRefADSGoogle Scholar
  16. 16.
    Herrera J.C. (1973). Relativistic motion in a uniform magnetic field. Phys. Rev. D 7: 1567–1570 CrossRefADSGoogle Scholar
  17. 17.
    Herrera J.C. (1974). Relativistic motion in a uniform magnetic field II. Phys. Rev. D 10: 4297–4298 CrossRefADSGoogle Scholar
  18. 18.
    Jackson E.A. (1984). Radiation reaction dynamics in an electromagnetic wave and constant electric field. J. Math. Phys. 25: 1584–1591 CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Keitel C.H., (1998). Radiative reaction in ultra-intense laser-atom interaction. J. Phys. B 31: L75–L83 CrossRefADSGoogle Scholar
  20. 20.
    Klepikov N.P. (1985). Radiation damping forces and radiation from charged particles. Sov. Phys. Usp. 28: 506–520 CrossRefADSGoogle Scholar
  21. 21.
    Koga J. (2004). Integration of the Lorentz–Dirac equation: Interaction of an intense laser pulse with high-energy electrons. Phys. Rev. E 70: 046502 CrossRefADSMathSciNetGoogle Scholar
  22. 22.
    Koga J., Esirkepov T.Zh. and Bulanov S.V. (2005). Nonlinear Thomson scattering in the strong radiation damping regime. Phys. Plasmas 12: 093106 CrossRefADSGoogle Scholar
  23. 23.
    Landau L.D. and Lifshitz E.M. (1975). The Classical Theory of Fields. Elsevier, Oxford Google Scholar
  24. 24.
    Mourou G., Tajima T. and Bulanov S.V. (2006). Optics in the relativistic regime. Rev. Mod. Phys. 78: 309–371 CrossRefADSGoogle Scholar
  25. 25.
    Nikishov A.I. and Ritus V.I. (1964). Quantum processes in the field of a plane electromagnetic wave and in a constant field I. Sov. Phys. JETP 19: 529–541 MathSciNetGoogle Scholar
  26. 26.
    Nikishov A.I. and Ritus V.I. (1964). Quantum processes in the field of a plane electromagnetic wave and in a constant field II. Sov. Phys. JETP 19: 1191–1199 MathSciNetGoogle Scholar
  27. 27.
    Nikishov A.I. and Ritus V.I. (1965). Nonlinear effects in Compton scattering and pair production owing to absorption of several photons. Sov. Phys. JETP 20: 757–759 Google Scholar
  28. 28.
    Norby, J.: Petawatt lasers aim for relativistic phenomena. Laser Focus World, January 1 (2005)Google Scholar
  29. 29.
    Rohrlich, F.: Classical Charged Particles. World Scientific. Singapore (2007)Google Scholar
  30. 30.
    Rohrlich F. (2000). The self-force and the radiation reaction. Am. J. Phys. 68: 1109–1112 CrossRefADSGoogle Scholar
  31. 31.
    Rohrlich F. (2001). The correct equation of motion of a classical point charge. Phys. Lett. A 283: 276–278 MATHCrossRefADSMathSciNetGoogle Scholar
  32. 32.
    Salamin Y.I., (2006). Relativistic high-power laser-matter interactions. Phys. Rep. 427: 41–155 CrossRefADSGoogle Scholar
  33. 33.
    Schrüfer, E.: Exakte Lösungen der Lorentz–Dirac-Gleichung. Doctoral Thesis, University of Bonn, pp. 40–41 (1973)Google Scholar
  34. 34.
    Shen C.S. (1970). Synchrotron emission at strong radiative damping. Phys. Rev. Lett. 24: 410–415 CrossRefADSGoogle Scholar
  35. 35.
    Shen C.S. (1972). Magnetic Bremsstrahlung in an intense magnetic field. Phys. Rev. D 6: 2736–2754 CrossRefADSGoogle Scholar
  36. 36.
    Spohn H. (2000). The critical manifold of the Lorentz–Dirac equation. Europhys. Lett. 50: 287–292 CrossRefADSGoogle Scholar
  37. 37.
    Spohn H. (2004). Dynamics of Charged Particles and their Radiation Field. Cambridge University Press, Cambridge MATHGoogle Scholar
  38. 38.
    Tajima T. and Mourou G. (2002). Zettawatt-exawatt lasers and their applications in ultrastrong-field physics. Phys. Rev. ST Accel. Beams 5: 031301 CrossRefADSGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  1. 1.Max-Planck-Institut für KernphysikHeidelbergGermany

Personalised recommendations